Answer:


Explanation:
Usando la ley de Hook tenemos:

Solving it for k we have:



Usando la misma ecuación y sabiendo k tenemos:



Espero esto te ayude!
Answer:
3. less than the kinetic energy of thesilly putty before the collision.
Explanation:
This is because kinetic energy is dependent on the mass and velocity of an object. Mathematically, it is given as:
K. E. = ½*m*v²
Where m = mass
v = velocity
In the case of the silly putty, we know that the masses of the ball of silly putty and the bowling ball are conserved, hence, the kinetic energy depends solely on the velocity at which the object moves.
After the collision with the bowling ball, because of how heavy a bowling ball is, the speed of the silly putty and bowling ball will definitely be less than the speed of the silly putty before collision, i. e. u > v.
Hence, the kinetic energy after collision will be less than the kinetic energy before collision.
Same answer as the first one above
Given:
Time: 3.5 hrs
Velocity: 120 miles/hr
Now Distance= Speed × Time
Now Velocity and speed have the same magnitude. Velocity being a vector quantity has a definite direction. Whereas speed is a scalar quantity,it indicates only the magnitude an doesn't define any direction.
Hence Distance = Velocity x time
Distance = 3.5 × 120 = 420 miles
Answer:
The frictional force needed to overcome the cart is 4.83N
Explanation:
The frictional force can be obtained using the following formula:

where
is the coefficient of friction = 0.02
R = Normal reaction of the load =
=
= 
Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.

F = 4.83 N
Hence, the frictional force needed to overcome the cart is 4.83N