Answer:
Vc = 2.41 v
Explanation:
voltage (v) = 16 v
find the voltage between the ends of the copper rods .
applying the voltage divider theorem
Vc = V x (
)
where
- Rc = resistance of copper =
(l = length , a = area, ρ = resistivity of copper)
- Ri = resistance of iron =
(l = length , a = area, ρ₀ = resistivity of copper)
Vc = V x (
)
Vc = V x (
)
Vc = V x (
)
where
- ρ = resistivity of copper = 1.72 x 10^{-8} ohm.meter
- ρ₀ = resistivity of iron = 9.71 x 10^{-8} ohm.meter
Vc = 16 x (
)
Vc = 2.41 v
A) Geothermal
B) Hydroelectric
C)Biomass
D) Wind
I assume this is the four options you had, correct?
i think that biomass is the only one that would release the greenhouse gases. I once heard, it may not be true, that biomass has more co2 released than coal.
"The path difference between the two waves should be one-quarter of a wavelength" is the statement among the choices given in the question that describes the <span>path difference between the two waves. The correct option among all the options that are given in the question is the fifth statement or the penultimate statement.</span>
Answer : The mass of a sample of water is, 888.89 grams
Explanation :
Latent heat of vaporization : It is defined as the amount of heat energy released or absorbed when the liquid converted to vapor at atmospheric pressure at its boiling point.
Formula used :

where,
q = heat = 2000 kJ =
(1 kJ = 1000 J)
L = latent heat of vaporization of water = 
m = mass of sample of water = ?
Now put all the given values in the above formula, we get:

(1 kg = 1000 g)
Therefore, the mass of a sample of water is, 888.89 grams
0.15 m/s East
If you follow the equation a=vf-vi/t, you'll discover that subtracting the final velocity, 0.25 m/s, by the initial velocity, 0.10 m/s, and divide by zero, (bc there was no given time) the answer is 0.15 m/s East