The equation for work (W) done by an electric field is:
W = qΔV
where q is the magnitude of the charge and ΔV is the potential difference. The question gives you W and q, so plug n' play to find ΔV:
10 = 2ΔV
ΔV = 5
Answer:
This is the answer: The speed of a proton is about 5.0 × 10⁵ m/s
Explanation:
Because of the speeds of protons! :D
Answer:
A) some of the rocks energy is transformed to thermal energy
Explanation:
If we neglect air resistance during the fall of the rock, than the mechanical energy of the rock (which is sum of its potential energy and its kinetic energy) would be constant during the entire motion, so the total energy of the rock at the top would be the same as the sum of its potential energy and kinetic energy at the bottom.
However, this not occurs, due to the presence of air resistance. In fact, air resistance acts against the fall of the rock, and because of the friction between the molecules of air and the surface of the rock, the rock loses part of its energy. This energy is converted into thermal energy of the molecules of the air.
Given that:
Energy of bulb (Work ) = 30 J,
Time (t) = 3 sec
The power consumption = ?
We know that, Power can be defined as rate of doing work
Power (P) = Work(Energy supplied) ÷ time
= 30 ÷ 3
= 10 Watts
<em> The power consumption is 10 W.</em>
Answer:
A because the bigger it is the the more force needs to act apond it
Explanation: