The momentum of the
x-ray photon is p = h/lambda . Lambda is the wavelength (0.30nm=3x10^(-9)m) and
h is Planck's constant,(h=6.62607004 × 10-34<span> m2 kg / s).The
momentum is: 2.2 x 10^(-25).</span>
The momentum can be calculated
also as: p=mv, where m is the mass of the electron and v is the speed.
So v=p/m,p is known,and
also the mass of the electron (m=9.10938356 × 10-31<span> kilograms).</span>
v=2.2 x 10^(-25)/9.10938356
× 10-31<span> kilograms=0.24 x 10^6 m/s</span>
Given that,
Time = 0.5 s
Acceleration = 10 m/s²
(I). We need to calculate the speed of apple
Using equation of motion

Where, v = speed
u = initial speed
a = acceleration
t = time
Put the value into the formula


(III). We need to calculate the height of the branch of the tree from the ground
Using equation of motion

Put the value into the formula


(II). We need to calculate the average velocity during 0.5 sec
Using formula of average velocity


Where,
= final position
= initial position
Put the value into the formula


Hence, (I). The speed of apple is 5 m/s.
(II). The average velocity during 0.5 sec is 2.5 m/s
(III). The height of the branch of the tree from the ground is 1.25 m.
Answer:
d. decreases
Explanation:
The law of conservation of momentum tells us that the sum of momenta before the collision is equal to the sum of momenta after the collision. The bag has no momentum as it falls onto the boat because its velocity is zero in the horizontal direction. But after it hits the boat, it's momentum increases while the momentum of the system remains the same. That means a component of the system must decrease somewhere else. And that component is the velocity, not the mass, of the boat.
A futuristic design for a car is to have a large solid disk-shaped flywheel within the car storing kinetic energy. The uniform flywheel has mass 370 kg with a radius of 0.500 m and can rotate up to 320 rev/s. Assuming all of this stored kinetic energy could be transferred to the linear velocity of the 3500-kg car, find the maximum attainable speed of the car.