m₁ = 2.3 kg <span>
θ₁ = 70° </span><span>
θ₂ = 17° </span><span>
g = 9.8 m/s²
->The component of the gravitational force on m₁ that is parallel down the incline is: </span><span>
F₁ = m₁ × g × sin(θ₁) </span><span>
F₁ = (2.3
kg) × (9.8 m/s²) × sin(70°) = 21.18 N </span><span>
->The component of the gravitational force on m₂ that is parallel down the incline is: </span><span>
F₂ = m₂ × g × sin(θ₂) </span><span>
F₂ = m₂ × (9.8 m/s²) × sin(70°) = m₂ × (2.86 m/s²) </span><span>
Then the total mass of the system is:
m = m₁ + m₂ </span><span>
m = (2.3 kg) + m₂ </span><span>
If it is given that m₂ slides down the incline, then F₂ must be bigger than F₁, </span><span>
and so the net force on the system must be:
F = m₂×(2.86
m/s²) - (21.18 N) </span><span>
Using Newton's second law, we know that
F = m × a
So if we want the acceleration to be 0.64 m/s², then
m₂×(2.86
m/s²) - (21.18 N) = [(2.3 kg) + m₂] ×
(0.64 m/s²) </span><span>
m₂×(2.86
m/s²) - (21.18 N) = (1.47 N) + m₂×(0.64
m/s²) </span><span>
m₂×(2.22
m/s²) = (22.65 N) </span><span>
m₂<span> = 10.2
kg</span></span>
When the resistance R is doubled, I = 1 A
One of the most fundamental and significant principles controlling electrical and electronic circuits is called Ohm's Law. For a linear device, it relates current, voltage, and resistance.
According to Ohm's Law, the current flowing through a circuit is inversely proportional to the resistance in the circuit and directly proportional to the applied potential difference.
Ohm's law can be written mathematically as follows:
V = IR
Where:
V = voltage expressed in Volts
I = current expressed in Amps
R = resistance expressed in Ohms
If any two quantities are known, the third can be computed by manipulating the formula.
I= V/R
R= V/I
To know more about Ohm's law refer:
brainly.com/question/796939
#SPJ4
Complete Question
A thin, horizontal, 12-cm-diameter copper plate is charged to 4.4 nC . Assume that the electrons are uniformly distributed on the surface. What is the strength of the electric field 0.1 mm above the center of the top surface of the plate?
Answer:
The values is 
Explanation:
From the question we are told that
The diameter is 
The charge is 
The distance from the center is 
Generally the radius is mathematically represented as

=> 
=> 
Generally electric field is mathematically represented as
![E = \frac{Q}{ 2\epsilon_o } [1 - \frac{k}{\sqrt{r^2 + k^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7BQ%7D%7B%202%5Cepsilon_o%20%7D%20%5B1%20-%20%5Cfrac%7Bk%7D%7B%5Csqrt%7Br%5E2%20%2B%20%20k%5E2%20%7D%20%7D%20%5D)
substituting values
![E = \frac{4.4 *10^{-9}}{ 2* (8.85*10^{-12}) } [1 - \frac{(1.00 *10^{-4})}{\sqrt{(0.06)^2 + (1.0*10^{-4})^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7B4.4%20%2A10%5E%7B-9%7D%7D%7B%202%2A%20%288.85%2A10%5E%7B-12%7D%29%20%7D%20%5B1%20-%20%5Cfrac%7B%281.00%20%2A10%5E%7B-4%7D%29%7D%7B%5Csqrt%7B%280.06%29%5E2%20%2B%20%20%281.0%2A10%5E%7B-4%7D%29%5E2%20%7D%20%7D%20%5D)

Answer:
A big wheel with triple the circumference of a small wheel will rotate with triple the force.
Explanation:
- when this circumference is tripled, it means triple the force (they are directly correlated)