Answer:
The population of the mice will decrease to the faster, stronger, and smarter mice because the weaker will die because of natural selection.
Explanation:
Answer:
I don't know about these problems at all.
Explanation:
I don't know about physics at all
Answer:
D
Explanation:
The negative feedback is responsible for maintaining equilibrium (stability) in a system as it lessens effects, which is contrary to positive feedback which increases reaction and moves a system further away from equilibrium (stability), It does so by amplifying the effects of a product or event and occurs when something needs to happen quickly. e.g
- Insulin lowers down blood sugar levels, so when the body detects that it has too much sugar, the pancreas is prompted to release insulin and only stops when balance is achieved; hence, negative feedback.
- When there is a tear on the skin, a chemical is released. This chemical causes platelets in the blood to activate, hence they release a chemical which signals more platelets to activate, until the wound is clotted, positive feedback.
Mainly because of the higher energy of blue light than red light.
In fact, light is made of photons, each one carrying an energy equal to

where h is the Planck constant while f is the frequency of the light.
The frequency of red light is approximately 450 THz, while the frequency of blue light is about 650 Hz. Higher frequency means higher energy, so blue light is more energetic than red light and therefore it can cause more damages than red light.
Given:
Area of pool = 3m×4m
Diameter of orifice = 0.076m
Outlet Velocity = 6.3m/s
Accumulation velocity = 1.5cm/min
Required:
Inlet flowrate
Solution:
The problem can be solved by this general formula.
Accumulation = Inlet flowrate - Outlet flowrate
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice
First, we need to convert the units of the accumulation velocity into m/s to be consistent.
Accumulation velocity = 1.5cm/min × (1min/60s)×(1m/100cm)
Accumulation velocity = 0.00025 m/s
We then calculate the area of the pool and the area of the orifice by:
Area of pool = 3 × 4 m²
Area of pool = 12m²
Area of orifice = πd²/4 = π(0.076m)²/4
Area of orifice = 0.00454m²
Since we have all we need, we plug in the values to the general equation earlier
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice
0.00025 m/s × 12m² = Inlet flowrate - 6.3m/s × 0.00454m²
Transposing terms,
Inlet flowrate = 0.316 m³/s