Answer:
largest lead = 3 m
Explanation:
Basically, this problem is about what is the largest possible distance anchorman for team B can have over the anchorman for team A when the final leg started that anchorman for team A won the race. This show that anchorman for team A must have higher velocity than anchorman for team B to won the race as at the starting of final leg team B runner leads the team A runner.
So, first we need to calculate the velocities of both the anchorman
given data:
Distance = d = 100 m
Time arrival for A = 9.8 s
Time arrival for B = 10.1 s
Velocity of anchorman A = D / Time arrival for A
=100/ 9.8 = 10.2 m/s
Velocity of anchorman B = D / Time arrival for B
=100/10.1 = 9.9 m/s
As speed of anchorman A is greater than anchorman B. So, anchorman A complete the race first than anchorman B. So, anchorman B covered lower distance than anchorman A. So to calculate the covered distance during time 9.8 s for B runner, we use
d = vt
= 9.9 x 9.8 = 97 m
So, during the same time interval, anchorman A covered 100 m distance which is greater than anchorman B distance which is 97 m.
largest lead = 100 - 97 = 3 m
So if his lead no more than 3 m anchorman A win the race.
The acceleration of the ball after leaving the hand is
downward
Explanation:
In order to find the acceleration of the ball during its motion, we have to study which forces are acting on it.
After the ball leaves the hand, if we neglect air resistance, there is only one force acting on the ball: the force of gravity, whose magnitude is

where m is the mass of the ball and g is the acceleration of gravity (
), acting in the downward direction.
According to Newton's second law, the acceleration of the ball is given by

where
is the net force acting on the ball
After the ball leaves the hand, the only force acting on it is the force of gravity, so we can substitute (mg) into the previous equation:

This means that the acceleration of the ball remains
downward for the entire motion, after leaving the hand.
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Weather balloons are filled with only a small amount of helium because the __Volume__. of the balloon will increase as the air pressure decreases at higher altitudes.
Answer:
mph
Explanation:
= Speed of bird in still air
= Speed of wind = 44 mph
Consider the motion of the bird with the wind
= distance traveled with the wind = 9292 mi
= time taken to travel the distance with wind
Time taken to travel the distance with wind is given as

eq-1
Consider the motion of the bird with the wind
= distance traveled against the wind = 6060 mi
= time taken to travel the distance against wind
Time taken to travel the distance against wind is given as

eq-2
As per the question,
Time taken with the wind = Time taken against the wind





mph
Answer:
51 Ω.
Explanation:
We'll begin by calculating the equivalent resistance of R₁ and R₃. This can be obtained as follow:
Resistor 1 (R₁) = 40 Ω
Resistor 3 (R₃) = 70.8 Ω
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) =?
Since the two resistors are in parallel connection, their equivalent can be obtained as follow:
R₁ₙ₃ = R₁ × R₃ / R₁ + R₃
R₁ₙ₃ = 40 × 70.8 / 40 + 70.8
R₁ₙ₃ = 2832 / 110.8
R₁ₙ₃ = 25.6 Ω
Finally, we shall determine the equivalent resistance of the group. This can be obtained as follow:
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) = 25.6 Ω
Resistor 2 (R₂) = 25.4 Ω
Equivalent Resistance (Rₑq) =?
Rₑq = R₁ₙ₃ + R₂ (series connection)
Rₑq = 25.6 + 25.4
Rₑq = 51 Ω
Therefore, the equivalent resistance of the group is 51 Ω.