1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
11

The perimeter of regulation singles tennis court is 210 feet and the length is 57 feet less than 5 times the width. What are the

dimensions of the court
Mathematics
1 answer:
LenKa [72]3 years ago
7 0

Answer:

width= 27 ft, length=78 ft

Step-by-step explanation:

P=2l+2w

210=2l+2w

Divide by 2

105=l+w

l=5w-57

Substitute for l

105=6w-57

6w=162

w=27

l=5(27)-57

=135-27

l=78

You might be interested in
List seven guidelines that will help you plan a working budget.
Nutka1998 [239]
Gather financial details, list all sources of income, categorize expenses, list supplies, other expenses, calculate overall cost and subtract from your income, if needed tweak budget.
7 0
3 years ago
If 180° < α < 270°, cos⁡ α = −817, 270° < β < 360°, and sin⁡ β = −45, what is cos⁡ (α + β)?
eduard

Answer:

cos(\alpha+\beta)=-\frac{84}{85}

Step-by-step explanation:

we know that

cos(\alpha+\beta)=cos(\alpha)*cos(\beta)-sin(\alpha)*sin(\beta)

Remember the identity

cos^{2} (x)+sin^2(x)=1

step 1

Find the value of sin(\alpha)

we have that

The angle alpha lie on the III Quadrant

so

The values of sine and cosine are negative

cos(\alpha)=-\frac{8}{17}

Find the value of sine

cos^{2} (\alpha)+sin^2(\alpha)=1

substitute

(-\frac{8}{17})^{2}+sin^2(\alpha)=1

sin^2(\alpha)=1-\frac{64}{289}

sin^2(\alpha)=\frac{225}{289}

sin(\alpha)=-\frac{15}{17}

step 2

Find the value of cos(\beta)

we have that

The angle beta lie on the IV Quadrant

so

The value of the cosine is positive and the value of the sine is negative

sin(\beta)=-\frac{4}{5}

Find the value of cosine

cos^{2} (\beta)+sin^2(\beta)=1

substitute

(-\frac{4}{5})^{2}+cos^2(\beta)=1

cos^2(\beta)=1-\frac{16}{25}

cos^2(\beta)=\frac{9}{25}

cos(\beta)=\frac{3}{5}

step 3

Find cos⁡ (α + β)

cos(\alpha+\beta)=cos(\alpha)*cos(\beta)-sin(\alpha)*sin(\beta)

we have

cos(\alpha)=-\frac{8}{17}

sin(\alpha)=-\frac{15}{17}

sin(\beta)=-\frac{4}{5}

cos(\beta)=\frac{3}{5}

substitute

cos(\alpha+\beta)=-\frac{8}{17}*\frac{3}{5}-(-\frac{15}{17})*(-\frac{4}{5})

cos(\alpha+\beta)=-\frac{24}{85}-\frac{60}{85}

cos(\alpha+\beta)=-\frac{84}{85}

4 0
3 years ago
Evaluate the summation of negative 5 n minus 1, from n equals 3 to 12..
NARA [144]

The summation of negative 5 n minus 1, from n equals 3 to 12 can be expressed as

n = 3/12

substitute the value of n to the equatio

-5n – 1

-5( 3/12 ) -1

-9/4

5 0
3 years ago
A company manufactures printers.
Alexus [3.1K]

Answer:

get x isolated

Step-by-step explanation:

8 0
3 years ago
How to solve this question
VMariaS [17]
<span>The variance method is as follows.

-Sum the squares of the values in data set, and then divide by the number of values in data set
- From that, subtract the square of the mean (add all values and divide by number of values in the data set)

Our variance is

<span>\displaystyle\sigma^2 = \frac{2^2 + 5^2 + m^2}{3} - \left(\frac{2 + 5 + m}{3}\right)^2

Since variance has to be 14, we set \sigma^2  = 14 and solve for m

14= \frac{4 + 25 + m^2}{3} - \left(\frac{7 + m}{3}\right)^2\ \Rightarrow \\ \\&#10;14 = \frac{29}{3} + \frac{1}{3}m^2 - \frac{1}{9}(7+m)^2 \\ \\&#10;14 = \frac{29}{3}+ \frac{1}{3}m^2 - \frac{1}{9}(49 + 14m + m^2) \\ \\&#10;14 = \frac{29}{3}+ \frac{1}{3}m^2 - \frac{49}{9}- \frac{14}{9}m- \frac{1}{9}m^2 \\ \\&#10;0 = \frac{-88}{9}  -\frac{14}{9}m + \frac{2}{9}m^2&#10;

quadratic formula


m = \displaystyle\frac{-b \pm \sqrt{b^2 -4ac}}{2a} \\&#10;m = \frac{-(-\frac{14}{9}) \pm \sqrt{\left(-\frac{14}{9}\right)^2 - 4(2/9)(-88/9)} }{2(2/9)} \\&#10;m = \frac{\frac{14}{9} \pm \sqrt{ \frac{196}{81} + \frac{704}{81} } }{\frac{4}{9} } \\&#10;m = \frac{\frac{14}{9} \pm \sqrt{ \frac{900}{81}  } }{\frac{4}{9} } \\&#10;m = \frac{\frac{14}{9} \pm \sqrt{ \frac{100}{9}  } }{\frac{4}{9} } \\&#10;m = \frac{\frac{14}{9} \pm \frac{10}{3}  }{\frac{4}{9} } \\&#10;m = 11, -4

-4 doesnt' work as it is not a positive integer

m = 11


</span></span>
5 0
3 years ago
Other questions:
  • Another question on Order of operations, what is the value of 28 + 4p? Let p = 11
    10·2 answers
  • 8th term of 1/4,1/8,1/16,1/32
    9·1 answer
  • What is 791.483 rounded to the nearest whole number?<br><br><br> please help me!!
    10·1 answer
  • Frank purchased 5 boxes of paper clips with 80 clips in each box . Cecily purchased 6 boxes of paper clips with 70 clips in each
    5·2 answers
  • F(x)= 2x^3-10x^2+12x-12<br><br> Find critical points
    8·1 answer
  • I request help please,and thank you.
    8·1 answer
  • Find the period of the function y= 5 cos 1/2x
    5·1 answer
  • If your gonna answer thanks
    14·2 answers
  • 3. Which of the following statement is TRUE?
    12·1 answer
  • Someone please answer this for me ASAP
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!