Answer:
Yes
Step-by-step explanation:
When graphing it you can see that (3, 4) is clearly a solution. The proper equation using slope intercept form is y= 2/3x + 2.
The answer would be answer choice a.
Because 5/4 = 1.25
tan (51) = 1.235
tan (45) = 1
tan (60) = 1.732
tan (57) = 1.5399
The closest to 1.25 is tan (51)
Hope this helps :)
I wonder if you mean to write
in place of
...
If you meant what you wrote, then we have


If you meant to write
(the cube root of 256), then we could go on to have
![\sqrt[3]{256}=\sqrt[3]{16^2}=\sqrt[3]{(4^2)^2}=\sqrt[3]{4^4}=\sqrt[3]{4^3\cdot4}=4\sqrt[3]4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256%7D%3D%5Csqrt%5B3%5D%7B16%5E2%7D%3D%5Csqrt%5B3%5D%7B%284%5E2%29%5E2%7D%3D%5Csqrt%5B3%5D%7B4%5E4%7D%3D%5Csqrt%5B3%5D%7B4%5E3%5Ccdot4%7D%3D4%5Csqrt%5B3%5D4)
Answer:
25.133 units
Step-by-step explanation:
Since the density ρ = r, our mass is
m = ∫∫∫r³sinθdΦdrdθ. We integrate from θ = 0 to π (since it is a hemisphere), Φ = 0 to 2π and r = 0 to 2 and the maximum values of r = 2 in those directions. So
m =∫∫[∫r³sinθdΦ]drdθ
m = ∫[∫2πr³sinθdθ]dr ∫dФ = 2π
m = ∫2πr³∫sinθdθ]dr
m = 2π∫r³dr ∫sinθdθ = 1
m = 2π × 4 ∫r³dr = 4
m = 8π units
m = 25.133 units