If the equation 2(g - h) = b + 4 is solved for g. Then the value of g will be b/2 + h + 2.
<h3>What is the solution of the equation?</h3>
A combination of equations solution is a collection of values x, y, z, etc. that enable all of the calculations to true at the same time.
The equation is given below.
2(g - h) = b + 4
Then solve the equation for the value of g. Then we have
2(g - h) = b + 4
g - h = b/2 + 2
g = h + b/2 + 2
More about the solution of the equation link is given below.
brainly.com/question/545403
#SPJ1
Answer:
Im not sure but, i would see what each corner is each.
Answer:
% Remaining![= [1-(1/2)^{\frac{t}{2.6}}]x100](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7Bt%7D%7B2.6%7D%7D%5Dx100%20)
And replacing the value t =5.5 hours we got:
% Remaining![= [1-(1/2)^{\frac{5.5}{2.6}}]x100 =76.922\%](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7B5.5%7D%7B2.6%7D%7D%5Dx100%20%3D76.922%5C%25)
Step-by-step explanation:
Previous concepts
The half-life is defined "as the amount of time it takes a given quantity to decrease to half of its initial value. The term is most commonly used in relation to atoms undergoing radioactive decay, but can be used to describe other types of decay, whether exponential or not".
Solution to the problem
The half life model is given by the following expression:

Where A(t) represent the amount after t hours.
represent the initial amount
t the number of hours
h=2.6 hours the half life
And we want to estimate the % after 5.5 hours. On this case we can begin finding the amount after 5.5 hours like this:

Now in order to find the percentage relative to the initial amount w can use the definition of relative change like this:
% Remaining = 
We can take common factor
and we got:
% Remaining![= [1-(1/2)^{\frac{t}{2.6}}]x100](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7Bt%7D%7B2.6%7D%7D%5Dx100%20)
And replacing the value t =5.5 hours we got:
% Remaining ![= [1-(1/2)^{\frac{5.5}{2.6}}]x100 =76.922\%](https://tex.z-dn.net/?f=%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7B5.5%7D%7B2.6%7D%7D%5Dx100%20%3D76.922%5C%25)