-10 times 12
Hope I Helped!
For this case we have that by definition, the slope of a line is given by:

Two points are needed through which the line passes:

Substituting:
Rounding:

Answer:

The answer is: z² .
__________________________
Given: <span>(x÷(y÷z))÷((x÷y)÷z) ; without any specified values for the variables;
_______________________
we shall simplify.
___________________
We have:
__________
</span>(x÷(y÷z)) / ((x÷y)÷z) .
_____________________________________
Start with the first term; or, "numerator": (x÷(y÷z)) ;
_____________________________________
x ÷ (y / z) = (x / 1) * (z / y) = (x * z) / (1 *y) = [(xz) / y ]
_____________________________________
Then, take the second term; or "denominator":
_____________________________________
((x ÷ y) ÷z ) = (x / y) / z = (x / y) * (1 / z) = (x *1) / (y *z) = [x / (zy)]
_________________________________________
So (x÷(y÷z)) / ((x÷y)÷z) = (x÷(y÷z)) ÷ ((x÷y)÷z) =
[(xz) / y ] ÷ [x / (zy)] = [(xz) / y ] / [x / (zy)] =
[(xz) / y ] * [(zy) / x] ;
_______________________________________
The 2 (two) z's "cancel out" to "1" ; and
The 2 (two) y's = "cancel out" to "1" ;
______________________________________________
And we are left with: z * z = z² . The answer is: z² .
______________________________________________
Answer:
Correct answers:
A. An angle that measures
radians also measures 
C. An angle that measures
also measures
radians
Step-by-step explanation:
Recall the formula to transform radians to degrees and vice-versa:

Therefore we can investigate each of the statements, and find that when we have a
radians angle, then its degree formula becomes:

also when an angle measures
, its radian measure is:

The other relationships are not true as per the conversion formulas
Answer:
Step-by-step explanation:
the answer is 3/7