Answer:
0.25 mol/L
Explanation:
The following data were obtained from the question:
Initial volume (V1) = 4L
Initial concentration (C1) = 0.5 mol/L
Final volume (V2) = 4 + 4 = 8L
Final concentration (C2) =?
Applying the dilution formula, we can easily find the concentration of the diluted solution as follow:
C1V1 = C2V2
0.5 x 4 = C2 x 8
Divide both side by 8
C2 = (0.5 x 4 )/ 8
C2 = 0.25 mol/L
Therefore the concentration of the diluted solution is 0.25 mol/L
A Wooden Spoon is your answer because metal attracts heat more, so it would get hotter.
The wooden spoon would not, so you would use that.
Glad I could help, and good luck!
Once the water evaporates, you will start to see the minerals that were present in the water before it changed state. If the water was from the ocean, you will see salt crystals in the evaporated water. If the water was fresh, you may see other minerals typically found in fresh water.
Answers:
(a) 30.55 °C
(b) 298 K and 77°F
(c) 204.44 °C and 477.44 K
(d) -320.8 °F and -196 °C
Explanation:
Converting °C into °F;
°F = °C × 1.8 + 32
Converting °F into °C;
°C = °F - 32 ÷ 1,8
Converting °C into K;
K = °C + 273
Converting K into °C;
°C = K - 273
Answer:
The equilibrium between the two forms of the gas is disturbed at high temperatures.