Atoms that share electrons in a chemical bond have covalent bonds. An oxygen molecule (O2) is a good example of a molecule with a covalent bond. Ionic bonds occur when electrons are donated from one atom to another.
5.6 Al(OH)3
5.6 Al, 16.8 O, 16.8 H
16.8 mols of oxegyn in 5.6 mols of Al(OH)3
Answer:
durage
Explanation:
durage just doesn't make sense compared to the other 3
Answer:
See below ~
Explanation:
1) <u>Ketone</u>
2) <u>Carboxylic Acid</u>
3) <u>Ketone</u>
4) <u>Ether</u>
5) <u>Alcohol</u>
6) <u>Halocarbon</u>
7) <u>Ester</u>
8) <u>Ketone</u>
Answer:
146 g/mol → option b.
Explanation:
This is a problem about the freezing point depression. The formula for this colligative property is:
ΔT = Kf . m . i
We assume i = 1, so our compound is not electrolytic.
ΔT = Freezing T° of pure solvent - Freezing T° of solution = 1.02 °C
m = molality (mol of solute/kg of solvent)
We convert the grams of solvent (benzene) to kg → 250 g . 1 kg/1000 = 0.250 kg.
We replace → 1.02°C = 5.12°C/mol/kg . mol/ 0.250kg . 1
1.02°C / 5.12 mol/kg/°C = mol/ 0.250kg
0.19922 mol/kg = mol/ 0.250kg
mol = 0.19922 . 0.250kg → 0.0498 mol
molar mass = g/mol → 7.27 g / 0.0498mol = 146 g/mol