Answer:
6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
Explanation:
We are given the chemical equation:

And we want to determine the amount of products produced when 12.5 moles of NH₃ is reacted with excess CuO.
Compute using stoichiometry. From the equation, we can see the following stoichiometric ratios:
- The ratio between NH₃ and N₂ is 2:1. (i.e. One mole of N₂ is produced from every two moles of NH₃.)
- The ratio between NH₃ and Cu is 2:3.
- The ratio between NH₃ and H₂O is 2:3. (i.e. Three moles of H₂O or Cu is produced frome every two moles of NH₃.)
Dimensional Analysis:
- The amount of N₂ produced:

- The amount of Cu produced:

- And the amount of H₂O produced:

In conclusion, 6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
Answer:
₁₁A
Explanation:
Atomic radius
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons.
This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases.
So in given elements consider A₁₁, B₁₂, C₁₃ ans D₁₇ as sodium, magnesium, aluminium and chlorine. This is the third period and as we move form sodium to chlorine atomic radius decreases. That's why sodium has greater size.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased
The production of
is
. Converting mass into kg,
1 ton=907.185 kg, thus,

Thus, production of
will be
.
The specific volume of
is
.
Volume of
produced per day can be calculated as:

Putting the values,

Thus, volume of
produced per year will be:

Thus, in 4 year volume of
produced will be:
