To determine the mass of oxygen per gram of sulfur for sulfur dioxide, we simply obtain the ratio of the mass of oxygen and the mass of sulfur produced from the decomposition of sulfur dioxide. All other values given in the problem statement above are just to confuse us that the question is a difficult one. We do as follows:
mass of oxygen per gram sulfur = 3.45 g / 3.46 g
mass of oxygen per gram sulfur = 0.9971 g O2 / g S
Answer:
the activation energy Ea = 179.176 kJ/mol
it will take 7.0245 mins for the same food to cook in an open pot of boiling water at an altitude of 10000 feet.
Explanation:
From the given information



Thus; 
Because at 113.0°C; the rate is 7 time higher than at 100°C
Hence:

1.9459 = 



Ea = 179.176 kJ/mol
Thus; the activation energy Ea = 179.176 kJ/mol
b)
here;






where ;


Now;

t = 7.0245 mins
Therefore; it will take 7.0245 mins for the same food to cook in an open pot of boiling water at an altitude of 10000 feet.
If a sample of gas is a 0.622-gram, volume of 2.4 L at 287 K and 0.850 atm. Then the molar mass of the gas is 7.18 g/mol
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates to the macroscopic properties of ideal gases.
An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given :
The ideal gas equation is given below.
n = PV/RT
n = 86126.25 x 0.0024 / 8.314 x 287
n = 0.622 / molar mass (n = Avogardos number)
Molar mass = 7.18 g
Hence, the molar mass of a 0.622-gram sample of gas having a volume of 2.4 L at 287 K and 0.850 atm is 7.18 g
More about the ideal gas equation link is given below.
brainly.com/question/4147359
#SPJ1
Answer:
Mass = 2.355 g
Explanation:
Given data:
Mass of K₂O needed = ?
Mass of KNO₃ produced = 5.00 g
Solution:
Chemical equation:
K₂O + Ca(NO₃)₂ → CaO + 2KNO₃
Number of moles of KNO₃:
Number of moles = mass/molar mass
Number of moles = 5.00 g/ 101.1 g/mol
Number of moles = 0.05 mol
now we will compare the moles of KNO₃ and K₂O.
KNO₃ : K₂O
2 : 1
0.05 : 1/2×0.05 = 0.025 mol
Mass of potassium oxide needed in gram:
Mass = number of moles × molar mass
Mass = 0.025 mol × 94.2 g/mol
Mass = 2.355 g
When the neutrons and electrons are the same. For example, sodium (Na) has an atomic mass of 11, meaning it has 11 protons and 11 electrons etc.