1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotegsom [21]
4 years ago
12

Electroplating uses electrolysis to coat one metal with another. In a copper-plating bath, copper ions with a charge of 2ee move

through the electrolyte from the copper anode to the cathode; the metal object to be plated.
If the current through the system is 1.2 A, how many copper ions reach the cathode each second?
Physics
1 answer:
zvonat [6]4 years ago
6 0

Answer:

1.2 A of current will send (3.744 × 10¹⁸) ions to the cathode per second.

Explanation:

According to Faraday's second law of electrolysis, the amount of ions/mass of substance deposited at an electrode depends on its equivalent weight.

For a divalent ion, it will require 2F of electricity per mole.

1 F = 96500 C

Amount of electricity that passes through the electrolyte per second = (magnitude of current) × (time) = It = (1.2 × 1) = 1.2 C

2F (2×96500C) of electricity will deposit 1 mole of Copper ions

That is,

193000 C of electricity will deposit 1 mole of Copper.

1.2 C will deposit (1.2×1/193000); 0.0000062176 mole of Copper.

1 mole of Copper contains (6.022 × 10²³) ions according to the Avogadro's constant.

0.0000062176 mole of Copper will contain (0.0000062176 × 6.022 × 10²³) ions = (3.744 × 10¹⁸) ions.

Therefore, 1.2 A of current will send (3.744 × 10¹⁸) ions to the cathode per second.

Hope this Helps!!!

You might be interested in
A pendulum consists of a 2.0 kg stone swinging on a4.0 m string of negligible mass. The stone has a speed of 8.0 m/swhen it pass
arlik [135]

Answer:

a) v_{60^{o}} =4.98 m/s

b) \theta_{max}=79.34^{o}

Explanation:

This problem can be solved by doing an energy analysis on the given situation. So the very first thing we can do in order to solve this is to draw a diagram of the situation. (see attached picture)

So, in an energy analysis, basically you will always have the same amount of energy in any position of the pendulum. (This is in ideal conditions) So in this case:

K_{lowest}+U_{lowest}=K_{60^{o}}+U_{60^{0}}

where K is the kinetic energy and U is the potential energy.

We know the potential energy at the lowest of its trajectory will be zero because it will have a relative height of zero. So the equation simplifies to:

K_{lowest}=K_{60^{o}}+U_{60^{0}}

So now, we can substitute the respective equations for kinetic and potential energy so we get:

\frac{1}{2}mv_{lowest}^{2}=\frac{1}{2}mv_{60^{o}}^{2}+mgh_{60^{o}}

we can divide both sides of the equation into the mass of the pendulum so we get:

\frac{1}{2}v_{lowest}^{2}=\frac{1}{2}v_{60^{o}}^{2}+gh_{60^{o}}

and we can multiply both sides of the equation by 2 to get:

v_{lowest}^{2}=v_{60^{o}}^{2}+2gh_{60^{o}}

so we can solve this for v_{60^{o}}. So we get:

v_{60^{o}}=\sqrt{v_{lowest}^{2}-2gh_{60^{0}}}

so we just need to find the height of the stone when the pendulum is at a 60 degree angle from the vertical. We can do this with the cos function. First, we find the vertical distance from the axis of the pendulum to the height of the stone when the angle is 60°. We will call this distance y. So:

cos \theta = \frac{y}{4m}

so we solve for y to get:

y = 4cos \theta

so we substitute the angle to get:

y=4cos 60°

y=2 m

so now we can find the height of the stone when the angle is 60°

h_{60^{o}}=4m-2m

h_{60^{o}}=2m

So now we can substitute the data in the velocity equation we got before:

v_{60^{o}}=\sqrt{v_{lowest}^{2}-2gh_{60^{0}}}

v_{60^{o}} = \sqrt{(8 m/s)^{2}-2(9.81 m/s^{2})(2m)}

so

v_{60^{o}}=4.98 m/s

b) For part b, we can do an energy analysis again to figure out what the height of the stone is at its maximum height, so we get.

K_{lowest}+U_{lowest}=K_{max}+U_{max}

In this case, we know that U_{lowest} will be zero and K_{max} will be zero as well since at the maximum point, the velocity will be zero.

So this simplifies our equation.

K_{lowest} =U_{max}

And now we substitute for the respective kinetic energy and potential energy equations.

\frac{1}{2}mv_{lowest}^{2}=mgh_{max}

again, we can divide both sides of the equation into the mass, so we get:

\frac{1}{2}v_{lowest}^{2}=gh_{max}

and solve for the height:

h_{max}=\frac{v_{lowest}^{2}}{2g}

and substitute:

h_{max}=\frac{(8m/s)^{2}}{2(9.81 m/s^{2})}

to get:

h_{max}=3.26m

This way we can find the distance between the axis and the maximum height to determine the angle of the pendulum about the vertical.

y=4-3.26 = 0.74m

next, we can use the cos function to find the max angle with the vertical.

cos \theta_{max}= \frac{0.74}{4}

\theta_{max}=cos^{-1}(\frac{0.74}{4})

so we get:

\theta_{max}=79.34^{o}

5 0
3 years ago
If your speed slows down you will have what acceleration?
vitfil [10]
When speed slows down you have kinetic energy.
8 0
4 years ago
Read 2 more answers
Explain the following (using the concepts of moment, center of gravity and stability.) a) Racing cars are low, with wide wheels.
LUCKY_DIMON [66]

Answer:

b

Explanation:

3 0
3 years ago
Energy stores in food would be considered what
Oksana_A [137]

Answer:

Chemical Energy

A Brief Overview Of Chemical Energy

Chemical energy is simply energy that is stored in compounds or elements, specifically in the atomic bonds that connect atoms and molecules. In food, it's a form of potential energy because it's stored away.

Explanation:

8 0
2 years ago
Read 2 more answers
you are moving fast on a skateboard when your wheel gets stuck in a crack on the sidewalk using the term inertia explain what ha
Leya [2.2K]
When the wheels of the skateboard get stuck in the crack of the sidewalk, the riders inertia will continue forward and cause him to fall off/down.

5 0
4 years ago
Read 2 more answers
Other questions:
  • On a hot summer day, you decide to make some iced tea. First, you brew 1.50 LL of hot tea and leave it to steep until it has rea
    12·1 answer
  • Which statement best describes the characteristics of white light? A. White light is composed of a spectrum of many different co
    15·1 answer
  • Describe what causes day and night
    10·2 answers
  • Water flows past a flat plate that is oriented parallel to the flow with an upstream velocity of 0.4 m/s. (a) Determine the appr
    6·1 answer
  • A 8kg cat us running 4 m/s. How much kenetic energy is that
    14·1 answer
  • After watching a show about submarines, Jamil wants to learn more about the oceans. Which question could be answered through sci
    15·2 answers
  • If the angular magnification of an astronomical telescope is 42 and the diameter of the objective is 72 mm, what is the minimum
    15·1 answer
  • Which of the following objects would absorb the most light?
    15·1 answer
  • A rabbit hops through a vegetable garden. He first hops 2 m south, then 4 m west, then 3 m south, and finally 1 m east. What dis
    8·1 answer
  • Balance the equation-<br> Al+Mn02 ———-&gt; Mn + Al2O3
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!