Using the domain concept, the restrictions on the domain of (u.v)(x) are given by:
A. u(x) ≠ 0 and v(x) ≠ 2.
<h3>What is the domain of a data-set?</h3>
The domain of a data-set is the set that contains all possible input values for the data-set.
To calculate u(x) x v(x) = (u.v)(x), we calculate the values of u and v and then multiply them, hence the restrictions for each have to be considered, which means that statement A is correct.
Summarizing, u cannot be calculated at x = 0, v cannot be calculated at x = 2, hence uv cannot be calculated for either x = 0 and x = 2.
More can be learned about the domain of a data-set at brainly.com/question/24374080
#SPJ1
Answer:
heres your answer
Step-by-step explanation:
here you go miss.
Answer:
It's the 3rd option.
-p^6
Step-by-step explanation:
Your answer is no solution (because a negative square root doesn't exist)
first, you divide all sides by five and then take b, half it then square it