I think and hope it is $ 267 because a dozen is 12
Hello user
To solve for V we simplify both sides of the equation then isolate the variable to get v <span>≥ 2
Therefor the answer is: </span>v ≥ 2
<span>
I hope this helped
-Chris</span>
Answer:
A), B) and D) are true
Step-by-step explanation:
A) We can prove it as follows:

B) When you compute the product Ax, the i-th component is the matrix of the i-th column of A with x, denote this by Ai x. Then, we have that
. Now, the colums of A are orthonormal so we have that (Ai x)^2=x_i^2. Then
.
C) Consider
. This set is orthogonal because
, but S is not orthonormal because the norm of (0,2) is 2≠1.
D) Let A be an orthogonal matrix in
. Then the columns of A form an orthonormal set. We have that
. To see this, note than the component
of the product
is the dot product of the i-th row of
and the jth row of
. But the i-th row of
is equal to the i-th column of
. If i≠j, this product is equal to 0 (orthogonality) and if i=j this product is equal to 1 (the columns are unit vectors), then
E) Consider S={e_1,0}. S is orthogonal but is not linearly independent, because 0∈S.
In fact, every orthogonal set in R^n without zero vectors is linearly independent. Take a orthogonal set
and suppose that there are coefficients a_i such that
. For any i, take the dot product with u_i in both sides of the equation. All product are zero except u_i·u_i=||u_i||. Then
then
.
Answer:
see below
Step-by-step explanation:
The first equation is in slope-intercept form, so you can see that the boundary line has a slope of -2 and goes through the point (x, y) = (0, -4). Since the comparison is "<", the line is dashed and shading is below it.
The second equation is that of a vertical boundary line at x=-3. It is solid, because the comparison includes the "equal" case. Shading is to the right of it, where x values are greater than -3.
Answer:
5x-y=50
Step-by-step explanation:
we know that
If two lines are parallel, then their slopes are the same
In this problem
The west edge of the basketball court is located on the line
y = 5x + 2 -----> the slope of this line is m=5
If the east edge cannot intersect with the west edge
then
east edge and west edge must be parallel
so
The east edge could be
5x-y=50
because
y=5x-50 ----> the slope of this line is m=5