The line contains point (2, 0) and (-5, 4).
y - 0 = (4 - 0)/(-5 - 2) (x - 2)
y = -4/7 (x - 2)
7y = -4(x - 2)
7y = -4x + 8
4x + 7y = 8
their is no answer
to that problem
The solutions to q² - 125 = 0 are q = ±√125.
q = -5√5
q = 5√5
Answer:
When f(n) = 4n and g(n) = n² + 2n, f(g(-6)) = 96.
Step-by-step explanation:
To evaluate f(g(-6)), first find g(-6).
g(n) = n² + 2n
Substitute value.
g(-6) = (-6)² + 2(-6)
Square -6. Remember that (-x)² = x²
g(-6) = 36 + 2(-6)
Multiply 2 and -6.
g(-6) = 36 - 12
Subtract 12 from 36.
g(-6) = 24.
Now knowing this, substitute that value into f(n).
f(g(-6)) = f(24)
f(n) = 4n
Substitute value.
f(24) = 4(24)
Multiply 4 and 24.
f(24) = 96.