1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRISSAK [1]
4 years ago
14

How does a room and board pay less

Mathematics
2 answers:
Vinil7 [7]4 years ago
6 0

Answer:

Because the room has no money and the board is just a board.

Step-by-step explanation:

Duh you could've figured that out yourself.

DedPeter [7]4 years ago
4 0

Answer:

Step-by-step explanation:

You might be interested in
Find the area of shaded sector of the circle?
Y_Kistochka [10]
Tutu bskdnb dhdbdvrnir
8 0
3 years ago
We have two fair three-sided dice, indexed by i = 1, 2. Each die has sides labeled 1, 2, and 3. We roll the two dice independent
Bogdan [553]

Answer:

(a) P(X = 0) = 1/3

(b) P(X = 1) = 2/9

(c) P(X = −2) = 1/9

(d) P(X = 3) = 0

(a) P(Y = 0) = 0

(b) P(Y = 1) = 1/3

(c) P(Y = 2) = 1/3

Step-by-step explanation:

Given:

- Two 3-sided fair die.

- Random Variable X_1 denotes the number you get for rolling 1st die.

- Random Variable X_2 denotes the number you get for rolling 2nd die.

- Random Variable X = X_2 - X_1.

Solution:

- First we will develop a probability distribution of X such that it is defined by the difference of second and first roll of die.

- Possible outcomes of X : { - 2 , -1 , 0 ,1 , 2 }

- The corresponding probabilities for each outcome are:

                  ( X = -2 ):  { X_2 = 1 , X_1 = 3 }

                  P ( X = -2 ):  P ( X_2 = 1 ) * P ( X_1 = 3 )

                                 :  ( 1 / 3 ) * ( 1 / 3 )

                                 : ( 1 / 9 )

   

                  ( X = -1 ):  { X_2 = 1 , X_1 = 2 } + { X_2 = 2 , X_1 = 3 }

                 P ( X = -1 ):  P ( X_2 = 1 ) * P ( X_1 = 3 ) + P ( X_2 = 2 ) * P ( X_1 = 3)

                                 :  ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 )

                                 : ( 2 / 9 )

         

       ( X = 0 ):  { X_2 = 1 , X_1 = 1 } + { X_2 = 2 , X_1 = 2 } +  { X_2 = 3 , X_1 = 3 }

       P ( X = -1 ):P ( X_2 = 1 )*P ( X_1 = 1 )+P( X_2 = 2 )*P ( X_1 = 2)+P( X_2 = 3 )*P ( X_1 = 3)

                                 :  ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 )

                                 : ( 3 / 9 ) = ( 1 / 3 )

       

                    ( X = 1 ):  { X_2 = 2 , X_1 = 1 } + { X_2 = 3 , X_1 = 2 }

                 P ( X = 1 ):  P ( X_2 = 2 ) * P ( X_1 = 1 ) + P ( X_2 = 3 ) * P ( X_1 = 2)

                                 :  ( 1 / 3 ) * ( 1 / 3 ) + ( 1 / 3 ) * ( 1 / 3 )

                                 : ( 2 / 9 )

                    ( X = 2 ):  { X_2 = 1 , X_1 = 3 }

                  P ( X = 2 ):  P ( X_2 = 3 ) * P ( X_1 = 1 )

                                    :  ( 1 / 3 ) * ( 1 / 3 )

                                    : ( 1 / 9 )                  

- The distribution Y = X_2,

                          P(Y=0) = 0

                          P(Y=1) =  1/3

                          P(Y=2) = 1/ 3

- The probability for each number of 3 sided die is same = 1 / 3.

7 0
3 years ago
What is the GCF of 24 and 44?
mariarad [96]
<span> write out all the factors of each number or draw out a factor tree

24:1,2,3,4,6,8,12,24

44:1,2,4,11,22

the GCF is the largest number in both the lists so in this case it is 4 </span>
6 0
3 years ago
Read 2 more answers
OKKK PLEASE SOMEONE HELP ME THIS IS THE FOURTH TIME I HAVE HAD TO POST THIS!
Masteriza [31]
I think the answer to your question might be 6
4 0
3 years ago
Read 2 more answers
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
Other questions:
  • S = ut+ 16t²<br>Find the value of s when u = 2 and t = 3.​
    14·2 answers
  • If a(x) = 3x + 1 and p(x)= x-4, what is the domain of (b•a)(x)?
    14·1 answer
  • What rule changes the input numbers to output numbers?
    9·1 answer
  • Tell someone a story about "1 more and then 1 more
    11·1 answer
  • Wich set of numbers can represent the side lengths, in centimeters , of a right triangle ?
    15·1 answer
  • Quadrilateral ABCD is similar to Quadrilateral EFGH. Diagonal AC has length 7 and diagonal EG has length 13. What is the scale f
    11·1 answer
  • 3. the quotient of -9 and y
    11·1 answer
  • If an angle is twice its supplement, the angle is ____ degrees.
    10·2 answers
  • At HEB, you can buy a 12 pack of Coke for $5,28 or you can buy a case, 20-pak of cans for $8 78. Which pack offers the better de
    7·1 answer
  • HELP ME PLEASEEEEEEEEEEEEE
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!