We are given statement : 3 more than a number then divided the result by 8.
We need to write an algebraic expression for it.
Let us assume unknown number be n.
3 more than n = (n+3).
Now, we need to divide that result (n+3) by 8.
So, we would get (n+3) divided by 8 =
.
<h3>Therefore, final expression is

</h3>
Answer:
41.66666
Step-by-step explanation:
Answer:
34 square units
Step-by-step explanation:
The figure can be considered to be a trapezoid with a rectangle removed.
The area of the trapezoid is ...
A = (1/2)(b1 +b2)h
A = (1/2)(10 +6)(5) = 40
The area of the rectangle is ...
A = LW
A = (3)(2) = 6
Then the area of the shaded portion of the figure is ...
shaded area = trapezoid area - rectangle area
= 40 - 6 = 34 . . . square units
Answer:

Step-by-step explanation:
Total number of toll-free area codes = 6
A complete number will be of the form:
800-abc-defg
Where abcdefg can be any 7 numbers from 0 to 9. This holds true for all the 6 area codes.
Finding the possible toll free numbers for one area code and multiplying that by 6 will give use the total number of toll free numbers for all 6 area codes.
Considering: 800-abc-defg
The first number "a" can take any digit from 0 to 9. So there are 10 possibilities for this place. Similarly, the second number can take any digit from 0 to 9, so there are 10 possibilities for this place as well and same goes for all the 7 numbers.
Since, there are 10 possibilities for each of the 7 places, according to the fundamental principle of counting, the total possible toll free numbers for one area code would be:
Possible toll free numbers for 1 area code = 10 x 10 x 10 x 10 x 10 x 10 x 10 = 
Since, there are 6 toll-free are codes in total, the total number of toll-free numbers for all 6 area codes = 