1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
3 years ago
13

Calculate the area of the figure shown below: https://ibb.co/jSyo5b

Mathematics
1 answer:
Mrrafil [7]3 years ago
7 0
192 don't forget to square root it
You might be interested in
Using the diagram below, translate the figure 3 units to the left and 2 units up. Graph the translated figure and provide the tr
aleksandrvk [35]
Bah ahaha because i’m trying to get answers to m
8 0
2 years ago
Solve for X. show your work. (x+2)(x+8)=0
valentinak56 [21]

Step-by-step explanation:

x = -2

x = -8

please follow me

3 0
2 years ago
0.45 plus 9x equals 27
oee [108]

Answer:

x = 2.95

Step-by-step explanation:

<u>Step 1:  Convert words into an expression</u>

0.45 plus 9x equals 27

0.45 + 9x = 27

<u>Step 2:  Solve for x</u>

0.45 + 9x - 0.45 = 27 - 0.45

9x / 9 = 26.55 / 9

x = 2.95

Answer:  x = 2.95

7 0
3 years ago
Read 2 more answers
Cos(A) = ?<br> 13/5<br> 12/5<br> 12/13<br> 5/13
ollegr [7]

Answer:

cosA = \frac{5}{13}

Step-by-step explanation:

cosA = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{5}{13}

6 0
3 years ago
If cos() = − 2 3 and is in Quadrant III, find tan() cot() + csc(). Incorrect: Your answer is incorrect.
nydimaria [60]

Answer:

\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = \frac{5 - 3\sqrt 5}{5}

Step-by-step explanation:

Given

\cos(\theta) = -\frac{2}{3}

\theta \to Quadrant III

Required

Determine \tan(\theta) \cdot \cot(\theta) + \csc(\theta)

We have:

\cos(\theta) = -\frac{2}{3}

We know that:

\sin^2(\theta) + \cos^2(\theta) = 1

This gives:

\sin^2(\theta) + (-\frac{2}{3})^2 = 1

\sin^2(\theta) + (\frac{4}{9}) = 1

Collect like terms

\sin^2(\theta)  = 1 - \frac{4}{9}

Take LCM and solve

\sin^2(\theta)  = \frac{9 -4}{9}

\sin^2(\theta)  = \frac{5}{9}

Take the square roots of both sides

\sin(\theta)  = \±\frac{\sqrt 5}{3}

Sin is negative in quadrant III. So:

\sin(\theta)  = -\frac{\sqrt 5}{3}

Calculate \csc(\theta)

\csc(\theta) = \frac{1}{\sin(\theta)}

We have: \sin(\theta)  = -\frac{\sqrt 5}{3}

So:

\csc(\theta) = \frac{1}{-\frac{\sqrt 5}{3}}

\csc(\theta) = \frac{-3}{\sqrt 5}

Rationalize

\csc(\theta) = \frac{-3}{\sqrt 5}*\frac{\sqrt 5}{\sqrt 5}

\csc(\theta) = \frac{-3\sqrt 5}{5}

So, we have:

\tan(\theta) \cdot \cot(\theta) + \csc(\theta)

\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = \tan(\theta) \cdot \frac{1}{\tan(\theta)} + \csc(\theta)

\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = 1 + \csc(\theta)

Substitute: \csc(\theta) = \frac{-3\sqrt 5}{5}

\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = 1 -\frac{3\sqrt 5}{5}

Take LCM

\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = \frac{5 - 3\sqrt 5}{5}

6 0
3 years ago
Other questions:
  • FIND THE AREA OF THE SHADED REGION. SHOW ALL YOUR WORK.
    13·2 answers
  • A blueprint of a house shows a
    9·1 answer
  • Find the slope between the given two points (5,3) and (5,-9)
    11·2 answers
  • 5 Points
    10·1 answer
  • Ramsay cuts out a piece from a circular cardboard for a school project. The radius of the cardboard is 10 inches and the measure
    5·1 answer
  • If f(x) = -2x^2 + x–5, what is f(3)?
    5·1 answer
  • What is the length of the hypotenuse for a right triangle with legs of length 9 and 40?​
    7·2 answers
  • 7/8 of x is 14 can you answer
    9·1 answer
  • This graph represents a linear function. <br><br> Which equation is represented by this graph?
    11·1 answer
  • Based on this description, what conclusion did outsiders most likely draw about West African leaders after meeting Mansa Musa?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!