Answer:
B.) an intensive property
Explanation:
Bc it is a Characteristic Property that won't change no matter what size of sample is tested
Answer:
Explanation:
<u>1. Number of moles of gasoline</u>
a) Convert 60.0 liters to grams
- mass = 0.77kg/liter × 60.0 liter = 46.2 kg
- 46.2kg × 1,000g/kg = 46,200g
b) Convert 46,200 grams to moles
- molar mass of C₈H₁₈ = 114.2 g/mol
- number of moles = mass in grams / molar mass
- number of moles = 46,200g / (114.2 gmol) = 404.55 mol
<u>2. Number of moles of carbon dioxide, CO₂ produced</u>
a) Balanced chemical equation (given):
- C₈H₁₈ (l) + ²⁵/₂ O₂ (g) → 8 CO₂ (g) + 9 H₂O (g)
b) mole ratio:
- 1 mol C₈H₁₈ / 8 mol CO₂ = 404.55 mol C₈H₁₈ / x
Solve for x:
- x = 404.55mol C₈H₁₈ × 8 mol CO₂ / 1mol C₈H₁₈ = 3,236.4 mol CO₂
<u> 3. Convert the number of moles of carbon dioxide to volume</u>
Use the ideal gas equation:
- R = 0.08206 (mol . liter)/ (K . mol)
Substitute and compute:
- V =3,236.4 mol × 0.08206 (mol . liter) / (K . mol) 298.15K / 1 atm
Round to two significant figures (because the density has two significant figures): 79,000 liters ← answer
Four Consecutive terms are written as a-3, a-1, a+1,a+3. So
Sum of Terms : 4a=28
a=7
So the terms are 4,6,8,10
Verification : 4^2+6^2+8^2+10^2
= 216
Answer:
670.68°C
Explanation:
Given that:
volume of water = 50 ml but 1 g = 1 ml. Therefore the mass of water (m) = 50 ml × 1 g / ml = 50 g
specific heat (C) = 4.184 J/g˚C
Initial temperature = 20°C, final temperature = 22°C. Therefore the temperature change ΔT = final temperature - initial temperature = 22 - 20 = 2°C
The quantity of heat (Q) used to raise the temperature of a body is given by the equation:
Q = mCΔT
Substituting values:
Q = 50 g × 4.184 J/g˚C × 2°C = 418.4 J
Since the mass of lead = 5 g and specific heat = 0.129 J/g˚C. The heat used to raise the temperature of water is the same heat used to raise the temperature of lead.
-Q = mCΔT
-418.4 J = 5 g × 0.129 J/g˚C × ΔT
ΔT = -418.4 J / ( 5 g × 0.129 J/g˚C) = -648 .68°C
temperature change ΔT = final temperature - initial temperature
- 648 .68°C = 22°C - Initial Temperature
Initial Temperature = 22 + 648.68 = 670.68°C
Answer:
M = No.of moles of solute / Volume of solution in litres
HBr: H = 1 x 1 = 1 Br = 1 x 80
Molar mass : 81 g / mol
a. n = 27.7% / 100 =0.277 g / (81 g / mol) = 0.0034 mol
density = 1.24 g/ml ; D= m / v
b. 65.32 ml x 1 L / 1000 mL = 0.065 L
c. M= n / V
= 0.0034 mol / 0.065 L
M= 0.052 mol / L
The molarity of the concentrated HBr solution is 0.052 mol/L