If a point has 40 J of energy and the electric potential is 8 V, the charge must be: A. 5 C
<u>Given the following the details;</u>
- Electric potential = 8 Volts
To find the quantity of charge;
Mathematically, the quantity of charge with respect to electric potential is given by the formula;

Substituting the values into the formula, we have;

<em>Quantity of charge = 5 Coulombs</em>
Therefore, the quantity of charge must be <em>5 Coulombs.</em>
Find more information: brainly.com/question/21808222
Answer: 539.4 N
Explanation:
Let's begin by explaining that Coulomb's Law establishes the following:
"The electrostatic force
between two point charges
and
is proportional to the product of the charges and inversely proportional to the square of the distance
that separates them, and has the direction of the line that joins them"
What is written above is expressed mathematically as follows:
(1)
Where:
is the electrostatic force
is the Coulomb's constant
and
are the electric charges
is the separation distance between the charges
Then:
(2)
Isolating
and
:
(3)
Now, if we keep the same charges but we decrease the distance to
, (1) is rewritten as:
(4)
Then, the new electrostatic force will be:
(5) As we can see, the electrostatic force is increased when we decrease the distance between the charges.
Measuring density: Measure the mass (in grams) of each mineral sample available to you. The mass of each sample is measured using a balance or electronic scale. Record mass on a chart.
Here when car in front of us applied brakes then it is slowing down due to frictional force on it
So here we can say that friction force on the car front of our car is given as

So the acceleration of car due to friction is given as



now it is given that


so here we have


so the car will accelerate due to brakes by a = - 8.52 m/s^2