Answer:
The induced current and the power dissipated through the resistor are 0.5 mA and
.
Explanation:
Given that,
Distance = 1.0 m
Resistance = 3.0 Ω
Speed = 35 m/s
Angle = 53°
Magnetic field 
(a). We need to calculate the induced emf
Using formula of emf

Where, B = magnetic field
l = length
v = velocity
Put the value into the formula


We need to calculate the induced current


Put the value into the formula


(b). We need to calculate the power dissipated through the resistor
Using formula of power

Put the value into the formula


Hence, The induced current and the power dissipated through the resistor are 0.5 mA and
.
Answer:
a) 3-in. pipe
Explanation:
Given that
Fluid flow is in same amount in the same time it means that volume flow rate is same for the pipes
Volume flow rate
Q = A V
A=Area ,V=Velocity

If diameter d is more then the velocity will be less for same volume flow rate .We also Know that if pressure is more then the velocity will be less.
The second pipe 3 in diameter having more diameter then the velocity will be less but the pressure will be more.
That is why the 3 in diameter is having more pressure than 2 in diameter pipe.
Therefore the answer will be a.
a) 3-in diameter pipe
Explanation:
Given that,
Work done to stretch the spring, W = 130 J
Distance, x = 0.1 m
(a) We know that work done in stretching the spring is as follows :

(b) If additional distance is 0.1 m i.e. x = 0.1 + 0.1 = 0.2 m
So,

So, the new work is more than 130 J.
IV - Temperature
DV - Light intensity