One example is when n is 11. 11^2 + 4 = 125. 11 is odd but the 11th term of the sequence, 125, is not prime because 125 is divisible by 5 and 25.
∠BDC and ∠AED are right angles, is a piece of additional information is appropriate to prove △ CEA ~ △ CDB
Triangle AEC is shown. Line segment B, D is drawn near point C to form triangle BDC.
<h3> What are Similar triangles?</h3>
Similar triangles, are those triangles which have similar properties,i.e. angles and proportionality of sides.
Image is attached below,
as shown in figure
∡ACE = ∡BCD ( common angle )
∡AED = ∡BDC ( since AE and BD are perpendicular to same line EC and make right angles as E and C)
∡EAC =- ∡DBC ( corresponding angles because AE and BD are parallel lines)
Thus, △CEA ~ △CDB , because of the two perpendiculars AE and BD.
Learn more about similar triangles here:
brainly.com/question/25882965
#SPJ1
C= 2000 + 3(2500)
C= 2000 + 7,500
C= $9,500