1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
9

HELP ASAP: how do you write an american phone number in spanish format (grouping). example: 123-456-7890

Mathematics
1 answer:
koban [17]3 years ago
3 0
Not sure wym but if u can't write the format just write the numbers out in spanish: uno dos tres cuatro cinco seis siete ocho nueve diez
You might be interested in
Do the write a relation as a set of five ordered pairs then express the relation using a:
PSYCHO15rus [73]

Answer:

Step-by-step explanation:

Table

<h3>x I y</h3><h3>-------</h3><h3>1  I  2</h3><h3>2  I  4</h3><h3>3  I  6</h3><h3>4  I  8</h3><h3>5  I  10</h3>
4 0
2 years ago
How do we factor 225n to the 4th power minus p to the sixth power?
vova2212 [387]
I'm pretty sure this is correct.
{225n}^{4}   -  {p}^{6}
6 0
3 years ago
Question in pictures
yan [13]

The derivatives of the functions are listed below:

(a) f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}    

(b) f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }

(c) f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²    

(d) f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]

(e) f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶

(f) f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]

(g) f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)

(h) f'(x) = cot x + cos (㏑ x) · (1 / x)

<h3>How to find the first derivative of a group of functions</h3>

In this question we must obtain the <em>first</em> derivatives of each expression by applying <em>differentiation</em> rules:

(a) f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}

  1. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}        Given
  2. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4\cdot x - \frac{x}{5} + 5 \cdot x^{-1} - \sqrt[11]{2022}      Definition of power
  3. f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}       Derivative of constant and power functions / Derivative of an addition of functions / Result

(b) f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}

  1. f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}              Given
  2. f(x) = (x + 3)^{\frac{1}{3} }\cdot (x + 5)^{\frac{1}{3} }           Definition of power
  3. f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }        Derivative of a product of functions / Derivative of power function / Rule of chain / Result

(c) f(x) = (sin x - cos x) / (x² - 1)

  1. f(x) = (sin x - cos x) / (x² - 1)          Given
  2. f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²       Derivative of cosine / Derivative of sine / Derivative of power function / Derivative of a constant / Derivative of a division of functions / Result

(d) f(x) = 5ˣ · ㏒₅ x

  1. f(x) = 5ˣ · ㏒₅ x             Given
  2. f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]       Derivative of an exponential function / Derivative of a logarithmic function / Derivative of a product of functions / Result

(e) f(x) = (x⁻⁵ + √3)⁻⁹

  1. f(x) = (x⁻⁵ + √3)⁻⁹          Given
  2. f'(x) = - 9 · (x⁻⁵ + √3)⁻⁸ · (- 5) · x⁻⁶       Rule of chain / Derivative of sum of functions / Derivative of power function / Derivative of constant function
  3. f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶     Associative and commutative properties / Definition of multiplication / Result

(f) f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}

  1. f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}         Given
  2. f'(x) = 7^{x\cdot\ln x} \cdot \ln 7 \cdot (\ln x + 1) + 7\cdot (x\cdot \ln x)^{6}\cdot (\ln x + 1)         Rule of chain / Derivative of sum of functions / Derivative of multiplication of functions / Derivative of logarithmic functions / Derivative of potential functions
  3. f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]        Distributive property / Result

(g) f(x) = \arccos^{2} x - \arctan (\sqrt{x})

  1. f(x) = \arccos^{2} x - \arctan (\sqrt{x})        Given
  2. f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)      Derivative of the subtraction of functions / Derivative of arccosine / Derivative of arctangent / Rule of chain / Derivative of power functions / Result

(h) f(x) = ㏑ (sin x) + sin (㏑ x)

  1. f(x) = ㏑ (sin x) + sin (㏑ x)          Given
  2. f'(x) = (1 / sin x) · cos x + cos (㏑ x) · (1 / x)        Rule of chain / Derivative of sine / Derivative of natural logarithm /Derivative of addition of functions
  3. f'(x) = cot x + cos (㏑ x) · (1 / x)      cot x = cos x / sin x / Result

To learn more on derivatives: brainly.com/question/23847661

#SPJ1

7 0
1 year ago
What is customary length?
grigory [225]
Customary is a system of measurement used in the U.S. like feet, inches, etc.
4 0
2 years ago
A sample of 270 students who were taking online courses were asked to describe their overall impression of online learning on a
Luden [163]

Answer:

An 80% confidence intervals are (5.73 ,5.88)

Step-by-step explanation:

Given sample size (n) is = 270

The average score (μ) =5.81

and standard deviation σ= 0.99.

<u>80% confidence interval</u>:-

The<u> </u>80% confidence interval of the z- value is 1.28 ( from z-table)

An 80% confidence interval is defined by  sample mean ± 1.28 standard error

that is   μ ± 1.28 σ/√n

now substitute values (5.81 ± 1.28(0.99/√270))

(5.81 - 1.28(0.0602),5.81 + 1.28(0.0602)

(5.81 -0.0770 ,5.81 -0.0770)

(5.73 ,5.88)

<u>Conclusion:</u>-

An 80% confidence intervals are (5.73 ,5.88)

Therefore the population mean 5.81 lies between (5.73 ,5.88) at 80% confidence intervals

5 0
2 years ago
Other questions:
  • Need help I’m stuck. There is a track next to the school the track is 16 mile long. A group of students have a relay race. They
    6·1 answer
  • Write the vector u as a sum of two orthogonal vectors, one of which is the vector projection of u onto v
    7·2 answers
  • If r=4 units and x = 8 units then what is the volume of the cylinder shown above use 3.14 for TT and round your answer to the ne
    7·1 answer
  • Anyone know the answer?​
    10·1 answer
  • I NEED HELP PLZ ASAP!!!!! In right triangle ABCD above, x = A. 6 B. 8 C. 6√2 D. 10 E. 13
    6·1 answer
  • pablo found out that every classroom has 34 desks. There are 30 clasrooms. How many desks are I the school​
    6·2 answers
  • Can someone help me???
    13·1 answer
  • The multiplication property of equality could be used to solve which of the following equations?
    6·1 answer
  • Find the radius of a circle with an area of 1,124 sq feet.
    8·1 answer
  • Asriel says 2 times 2 is 4 Adrian says 2 times 3 is 6 Brittne says 2 times 5 is 4.Who is correct?​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!