If you want to know what is the number of m so first you can add 2 on both sides of equation like : 13 = 5m - 2
+2 +2 ⇒ 13 + 2 = 5m ⇒ 15 = 5m ⇒ 15/5 = m ⇒ 3=m :))
i hope this be helpful
have a nice day
The GCF of 10 and 45 is 5
Answer:
z=( -2 , 5/3) can you speak English
Answer:
D. The work shown above is correct and
may not be simplified further.
Step-by-step explanation:
The expression is given as,
![\sqrt[6]{x^{13}}=\sqrt[6]{x^{6}\times x^{7}}](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7Bx%5E%7B13%7D%7D%3D%5Csqrt%5B6%5D%7Bx%5E%7B6%7D%5Ctimes%20x%5E%7B7%7D%7D)
i.e. ![\sqrt[6]{x^{13}}=x\times \sqrt[6]{x^{7}}](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7Bx%5E%7B13%7D%7D%3Dx%5Ctimes%20%5Csqrt%5B6%5D%7Bx%5E%7B7%7D%7D)
Then, ![\sqrt[6]{x^{13}}=x\times \sqrt[6]{x^{7}}](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7Bx%5E%7B13%7D%7D%3Dx%5Ctimes%20%5Csqrt%5B6%5D%7Bx%5E%7B7%7D%7D)
Thus, we can see that above calculation is correct.
The right side of step 2 gives, ![\sqrt[6]{x^{6}\times x^{7}}=(x^{6})^\frac{1}{6}\times (x^{7})^\frac{1}{6}=x\times \sqrt[6]{x^{7}}](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7Bx%5E%7B6%7D%5Ctimes%20x%5E%7B7%7D%7D%3D%28x%5E%7B6%7D%29%5E%5Cfrac%7B1%7D%7B6%7D%5Ctimes%20%28x%5E%7B7%7D%29%5E%5Cfrac%7B1%7D%7B6%7D%3Dx%5Ctimes%20%5Csqrt%5B6%5D%7Bx%5E%7B7%7D%7D)
So, the work shown is correct and
may not be further simplified.
Hence, option D is correct.