8.1moles
Explanation:
Given parameters:
Mass of water to be decomposed = 29.2g
Unknown:
Number of moles of oxygen.
Solution:
To solve this problem, we first write the balanced reaction equation :
2H₂O → 2H₂ + O₂
Now convert the given mass of the water to number of moles;
Number of moles of water = 
Molar mass of water = 2(1) + 16 = 18g/mol
Number of moles of water =
= 16.2moles
From the balanced reaction equation:
2 moles of water produced 1 mole of oxygen gas;
16.2 mole of water will produce
= 8.1moles of oxygen gas
learn more:
Number of moles brainly.com/question/1841136
#learnwithBrainly
Distance and period of time is the correct answer
Hope this helps!
The rate law depicts the effect of concentration on reaction rate. Second mechanism 2NO(g) ⇄ N₂O₂(g) [fast], N₂O₂(g) + O₂(g) → 2NO₂(g) [slow] is most reasonable. Thus, option b is correct.
<h3>What is rate law?</h3>
Rate law and equation give the rate at which the reaction takes place under the influence of the concentration of the reactants. The balanced chemical reaction is given as,
2NO(g) + O₂(g) → 2NO₂(g)
The rate of the equation is given as,
rate = k [NO]² [O₂]
In a multi-step chemical reaction, the slowest step is the rate-determining step. The second mechanism is given as,
2NO (g) → N₂O₂ (g) [fast]
N₂O₂(g) +O₂(g) → 2NO₂ (g) [slow]
Rate is given as,
rate = k [N₂O₂] [O₂]
Therefore, option b. the second mechanism is the most reasonable.
Learn more about rate law, here:
brainly.com/question/14779101
#SPJ4
Answer:
2Li + F₂ → 2LiF
Explanation:
The reaction expression is given as:
Li + F₂ → LiF
We are to balance the expression. In that case, the number of atoms on both sides of the expression must be the same.
Let use a mathematical approach to solve this problem;
Assign variables a,b and c as the coefficients that will balance the expression:
aLi + bF₂ → cLiF
Conserving Li: a = c
F: 2b = c
let a = 1, c = 1 and b =
Multiply through by 2;
a = 2, b = 1 and c = 2
2Li + F₂ → 2LiF
Answer : The value of
for the reaction is, -565.6 kJ
Explanation :
First we have to calculate the molar mass of CO.
Molar mass CO = Atomic mass of C + Atomic mass of O = 12 + 16 = 28 g/mole
Now we have to calculate the moles of CO.

Now we have to calculate the value of
for the reaction.
The balanced equation will be,

From the balanced chemical reaction we conclude that,
As,
of CO release heat = 10.1 kJ
So, 2 mole of CO release heat = 
Therefore, the value of
for the reaction is, -565.6 kJ (The negative sign indicates the amount of energy is released)