Pressure can be defined as the force acting on a perpendicular surface per unit area.
Force exerted by a man of mass 100 kg wearing snow shoes = m.a
Where m = mass of the man = 100 kg
a = acceleration due to gravity= 9.8 
Force exerted by the man of mass 100 kg = 
Force exerted by woman of mass 60 kg = 
Force exerted by 100 kg man is greater than that exerted as 60 kg woman. The area on which this force is acting determines the pressure. Pressure is inversely proportional to the area on which the force acts. Therefore, the pressure exerted by 100 kg man wearing snow shoes is less than the pressure exerted by a 60 kg woman woman wearing high heels as the force acts over a larger area when the man wears snow shoes when compared to the force exerted over a smaller area in case of the woman wearing high heels.
Answer:
Explanation:
The melting point of a substance is the temperature at which its melt. The state of a substance is dependent on it's melting temperature. Generally, melting point above 25 °C is a solid.
This means phenol is a solid
Duodecane has melting point below 25 °C hence it is either a liquid or gas. However its boiling point of 216 °C means it would require higher temperature to boil it. Since 25 °C is less than 216 °C it means that it would remain in the liquid state.
Methane has melting point below 25 °C hence it is either a liquid or gas. However its boiling point of -164 °C means it boils easily even at very low temperatures. Since 25 °C is greater than -164 °C it means that it would exist in the gaseous state
Answer: 1) Temperature can change the solubility of a solute.
Explanation:
The chart is missing so there is no way to tell what does the graph show.
Yet, I can help you because I can explain the status of each statement of the choices. As you will see there is only one possibility..
<span>1) Temperature can change the solubility of a solute.
Yes, temperature definetly can, and mostly do, modify the solubility of a solute.
You can search any chart of solubility and will find that.
I can give you two examples:
a) Sodium chloride: dissolve some spoons of salt in a cold water until you can not dissolve more. Then, heat the water, you will find that more salt will get dissolved, proving that the temperature of the solution increases the solubility of sodium chloride.
b) Carbon dioxide gas: the soft drinks have CO₂ molecules dissolved in it.
The higher the temperature of the soft drink the less the amount of CO₂(g) that can be dissolved. That is why the soda bottling plants cool the beverage before adding the CO₂(g).
2) </span><span>Temperature has no affect on the solubility of a solute.
Since this is the opposite to the first statement and the first is true, this is false.
3) Salt has a greater solubility than sugar.
False.
This is an empirical result, which you cannot predict theoretically. So you need to see at the data either in a table or in a chart. Else you can test it at home. After the empirical data are shown it results that more grams of sugar can be dissolved in water compared to salt.
That is something you ca see in a chart or you can prove by yourself.
4) Nitrite salt has a greater solubility than sugar.
</span>
False.
Looking at some data you can find that sodium nitrite solutiliby is aroun 70 - 100 g/10 g while sugar (sucrose) solutiblity is around 180 - 235 g/ 100 g.
The answer is combustion
hope this helps