Answer:
a)
, b)
, c)
, d) Six polar bears.
Explanation:
a) The slab of ice is modelled by the Archimedes' Principles and the Newton's Laws, whose equation of equilibrium is:

The height of the ice submerged is:




The percentage of the volume of the ice that is submerged is:


b) The height of the portion of the ice that is submerged is:

c) The buoyant force acting on the ice is:


d) The new system is modelled after the Archimedes' Principle and Newton's Laws:

The number of polar bear is cleared in the equation:




The maximum number of polar bears that slab could support is 6.
Glass as it is heavier and by newtons first law and inertia the greater the mass = more inertia(resistance to chabge in motion) thus the glass has a greater mass than an empty paper cup and thus has greater inertia. So it would be easier to leave it in place
Answer:
Explanation:
The relation between orbital period T and orbital radius R is as follows .
T² ∝ R³
T ∝ R¹°⁵
So time period of orbit is proportional to radius of orbit . Higher the height , larger the orbital period . As the orbital period is larger than required , the altitude of satellite must have been larger than required .
As mass of satellite is not involved in the formula of orbital period , this is independent of mass of the satellite .
Hence the option C is correct .
Answer:
Its focal length is positive
Explanation:
A concave mirror is shown in attached figure. The distance from the pole to the focus of the mirror is called its focal length. Spherical mirrors are a part of a sphere.
As per conventions, we know that the axis opposite to x axis is taken as negative.
So, it is clear that the focal length of spherical concave mirror is negative.
Hence, the incorrect option is (c) " its focal length is positive".