Answer:
The greatest common factor is 2
Step-by-step explanation:
the greatest common factor is 2 because 6 98 and 140 are all numbers that can be multiplied by 2
Answer:
(a) moment generating function for X is ![\frac{1}{6}\left(e^{t}+e^{2 t}+e^{2 t}+e^{4 t}+e^{5 t}+e^{6 t}\right)](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B6%7D%5Cleft%28e%5E%7Bt%7D%2Be%5E%7B2%20t%7D%2Be%5E%7B2%20t%7D%2Be%5E%7B4%20t%7D%2Be%5E%7B5%20t%7D%2Be%5E%7B6%20t%7D%5Cright%29)
(b) ![\mathrm{E}(\mathrm{X})=\frac{21}{6} \text { and } E\left(X^{2}\right)=\frac{91}{6}](https://tex.z-dn.net/?f=%5Cmathrm%7BE%7D%28%5Cmathrm%7BX%7D%29%3D%5Cfrac%7B21%7D%7B6%7D%20%5Ctext%20%7B%20and%20%7D%20E%5Cleft%28X%5E%7B2%7D%5Cright%29%3D%5Cfrac%7B91%7D%7B6%7D)
Step-by step explanation:
Given X represents the number on die.
The possible outcomes of X are 1, 2, 3, 4, 5, 6.
For a fair die, ![P(X)=\frac{1}{6}](https://tex.z-dn.net/?f=P%28X%29%3D%5Cfrac%7B1%7D%7B6%7D)
(a) Moment generating function can be written as
.
![M_x(t)=\sum_{x=1}^{6} P(X=x)](https://tex.z-dn.net/?f=M_x%28t%29%3D%5Csum_%7Bx%3D1%7D%5E%7B6%7D%20P%28X%3Dx%29)
![M_{x}(t)=\frac{1}{6} e^{t}+\frac{1}{6} e^{2 t}+\frac{1}{6} e^{3 t}+\frac{1}{6} e^{4 t}+\frac{1}{6} e^{5 t}+\frac{1}{6} e^{6 t}](https://tex.z-dn.net/?f=M_%7Bx%7D%28t%29%3D%5Cfrac%7B1%7D%7B6%7D%20e%5E%7Bt%7D%2B%5Cfrac%7B1%7D%7B6%7D%20e%5E%7B2%20t%7D%2B%5Cfrac%7B1%7D%7B6%7D%20e%5E%7B3%20t%7D%2B%5Cfrac%7B1%7D%7B6%7D%20e%5E%7B4%20t%7D%2B%5Cfrac%7B1%7D%7B6%7D%20e%5E%7B5%20t%7D%2B%5Cfrac%7B1%7D%7B6%7D%20e%5E%7B6%20t%7D)
![M_x(t)=\frac{1}{6}\left(e^{t}+e^{2 t}+e^{3 t}+e^{4 t}+e^{5 t}+e^{6 t}\right)](https://tex.z-dn.net/?f=M_x%28t%29%3D%5Cfrac%7B1%7D%7B6%7D%5Cleft%28e%5E%7Bt%7D%2Be%5E%7B2%20t%7D%2Be%5E%7B3%20t%7D%2Be%5E%7B4%20t%7D%2Be%5E%7B5%20t%7D%2Be%5E%7B6%20t%7D%5Cright%29)
(b) Now, find
using moment generating function
![M^{\prime}(t)=\frac{1}{6}\left(e^{t}+2 e^{2 t}+3 e^{3 t}+4 e^{4 t}+5 e^{5 t}+6 e^{6 t}\right)](https://tex.z-dn.net/?f=M%5E%7B%5Cprime%7D%28t%29%3D%5Cfrac%7B1%7D%7B6%7D%5Cleft%28e%5E%7Bt%7D%2B2%20e%5E%7B2%20t%7D%2B3%20e%5E%7B3%20t%7D%2B4%20e%5E%7B4%20t%7D%2B5%20e%5E%7B5%20t%7D%2B6%20e%5E%7B6%20t%7D%5Cright%29)
![\Rightarrow E(X)=\frac{21}{6}](https://tex.z-dn.net/?f=%5CRightarrow%20E%28X%29%3D%5Cfrac%7B21%7D%7B6%7D)
![M^{\prime \prime}(t)=\frac{1}{6}\left(e^{t}+4 e^{2 t}+9 e^{3 t}+16 e^{4 t}+25 e^{5 t}+36 e^{6 t}\right)](https://tex.z-dn.net/?f=M%5E%7B%5Cprime%20%5Cprime%7D%28t%29%3D%5Cfrac%7B1%7D%7B6%7D%5Cleft%28e%5E%7Bt%7D%2B4%20e%5E%7B2%20t%7D%2B9%20e%5E%7B3%20t%7D%2B16%20e%5E%7B4%20t%7D%2B25%20e%5E%7B5%20t%7D%2B36%20e%5E%7B6%20t%7D%5Cright%29)
![M^{\prime \prime}(0)=E(X)=\frac{1}{6}(1+4+9+16+25+36)](https://tex.z-dn.net/?f=M%5E%7B%5Cprime%20%5Cprime%7D%280%29%3DE%28X%29%3D%5Cfrac%7B1%7D%7B6%7D%281%2B4%2B9%2B16%2B25%2B36%29)
Hence, (a) moment generating function for X is
.
(b) ![\mathrm{E}(\mathrm{X})=\frac{21}{6} \text { and } E\left(X^{2}\right)=\frac{91}{6}](https://tex.z-dn.net/?f=%5Cmathrm%7BE%7D%28%5Cmathrm%7BX%7D%29%3D%5Cfrac%7B21%7D%7B6%7D%20%5Ctext%20%7B%20and%20%7D%20E%5Cleft%28X%5E%7B2%7D%5Cright%29%3D%5Cfrac%7B91%7D%7B6%7D)