The air that is inside a ship is much less dense than water. That's what keeps it floating! ... The closer the total density of the ship is to the density of the same volume of water, the greater the amount of the ship that will be in the water.
The clicker emits EM (electromagnetic) wave which travels at the speed of light, that is
v = 3 x 10⁸ m/s
The frequency is
f = 900mHz = 9 x 10⁸ Hz
Because velocity = frequency * wavelength, the wavelength, λ, is given by
fλ = v
λ = v/f
= (3 x 10⁸ m/s) / (9 x 10⁸ 1/s)
= 1/3 m
Answer: 1/3 m
Answer:
airplane
Explanation:
as greater mass greater inertia
Answer:
0.465 kgm/s
Explanation:
Given that
Mass of the cart A, m1 = 450 g
Speed of the cart A, v1 = 0.85 m/s
Mass of the cart B, m2 = 300 g
Speed of the cart B, v2 = 1.12 m/s
Now, using the law of conservation of momentum.
It is worthy of note that our cart B is moving in opposite directions to A
m1v1 + m2v2 =
(450 * 0.85) - (300 * 1.12) =
382.5 - 336 =
46.5 gm/s
If we convert to kg, we have
46.5 / 100 = 0.465 kgm/s
Thus, the total momentum of the system is 0.465 kgm/s