Answer:
Part A:
The proton has a smaller wavelength than the electron.
<
Part B:
The proton has a smaller wavelength than the electron.
<
Explanation:
The wavelength of each particle can be determined by means of the De Broglie equation.
(1)
Where h is the Planck's constant and p is the momentum.
(2)
Part A
Case for the electron:
![\lambda = \frac{6.624x10^{-34} J.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B6.624x10%5E%7B-34%7D%20J.s%7D%7B%289.11x10%5E%7B-31%7DKg%29%286.55x10%5E%7B6%7Dm%2Fs%29%7D)
But ![J = Kg.m^{2}/s^{2}](https://tex.z-dn.net/?f=J%20%3D%20Kg.m%5E%7B2%7D%2Fs%5E%7B2%7D)
![\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B6.624x10%5E%7B-34%7DKg.m%5E%7B2%7D%2Fs%5E%7B2%7D.s%7D%7B%289.11x10%5E%7B-31%7DKg%29%286.55x10%5E%7B6%7Dm%2Fs%29%7D)
![\lambda = 1.10x10^{-10}m](https://tex.z-dn.net/?f=%5Clambda%20%3D%201.10x10%5E%7B-10%7Dm)
Case for the proton:
![\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(6.55x10^{6}m/s)}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B6.624x10%5E%7B-34%7DKg.m%5E%7B2%7D%2Fs%5E%7B2%7D.s%7D%7B%281.67x10%5E%7B-27%7DKg%29%286.55x10%5E%7B6%7Dm%2Fs%29%7D)
![\lambda = 6.05x10^{-14}m](https://tex.z-dn.net/?f=%5Clambda%20%3D%206.05x10%5E%7B-14%7Dm)
Hence, the proton has a smaller wavelength than the electron.
<em>Part B </em>
For part b, the wavelength of the electron and proton for that energy will be determined.
First, it is necessary to find the velocity associated to that kinetic energy:
![KE = \frac{1}{2}mv^{2}](https://tex.z-dn.net/?f=KE%20%3D%20%5Cfrac%7B1%7D%7B2%7Dmv%5E%7B2%7D)
![2KE = mv^{2}](https://tex.z-dn.net/?f=2KE%20%3D%20mv%5E%7B2%7D)
(3)
Case for the electron:
![v = \sqrt{\frac{2(7.89x10^{-15}J)}{9.11x10^{-31}Kg}}](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7B2%287.89x10%5E%7B-15%7DJ%29%7D%7B9.11x10%5E%7B-31%7DKg%7D%7D)
but
![v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{9.11x10^{-31}Kg}}](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7B2%287.89x10%5E%7B-15%7Dkg%20%5Ccdot%20m%5E%7B2%7D%2Fs%5E%7B2%7D%29%7D%7B9.11x10%5E%7B-31%7DKg%7D%7D)
![v = 1.316x10^{8}m/s](https://tex.z-dn.net/?f=v%20%3D%201.316x10%5E%7B8%7Dm%2Fs)
Then, equation 2 can be used:
![\lambda = 5.525x10^{-12}m](https://tex.z-dn.net/?f=%5Clambda%20%3D%205.525x10%5E%7B-12%7Dm)
Case for the proton :
![v = \sqrt{\frac{2(7.89x10^{-15}J)}{1.67x10^{-27}Kg}}](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7B2%287.89x10%5E%7B-15%7DJ%29%7D%7B1.67x10%5E%7B-27%7DKg%7D%7D)
But ![1J = kg \cdot m^{2}/s^{2}](https://tex.z-dn.net/?f=1J%20%3D%20kg%20%5Ccdot%20m%5E%7B2%7D%2Fs%5E%7B2%7D)
![v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{1.67x10^{-27}Kg}}](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7B2%287.89x10%5E%7B-15%7Dkg%20%5Ccdot%20m%5E%7B2%7D%2Fs%5E%7B2%7D%29%7D%7B1.67x10%5E%7B-27%7DKg%7D%7D)
![v = 3.07x10^{6}m/s](https://tex.z-dn.net/?f=v%20%3D%203.07x10%5E%7B6%7Dm%2Fs)
Then, equation 2 can be used:
![\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(3.07x10^{6}m/s)}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B6.624x10%5E%7B-34%7DKg.m%5E%7B2%7D%2Fs%5E%7B2%7D.s%7D%7B%281.67x10%5E%7B-27%7DKg%29%283.07x10%5E%7B6%7Dm%2Fs%29%7D)
Hence, the proton has a smaller wavelength than the electron.
Answer:
condensing
Explanation:
Condensing is the word used to indicate the change of state of a substance from vapor to liquid, as in this case. During condensation, the substance releases thermal energy to the environment, therefore the kinetic energy of the molecules in the vapor decreases until they become closer to each other and they start to be affected by the intermolecular forces and so the substance becomes a liquid.
Resultant is 5 m/s using the Pythagorean theorem<span />
Answer:
wavelength
= 437.27 nm
Explanation:
given data
first bright fringe = 2.96 mm
slit separation = 0.325 mm
distance D = 2.20 m
solution
we know that this is double slit experiment
so we apply here Fringe width formula that is
β =
....................1
is Wavelength of light and D is Distance between screen and slit and d is slit width
so put here value and we get
=
= 437.27 ×
m
wavelength
= 437.27 nm
3 hours, because for every 50 km equals one hour 150 divided into 50 equals 3