Answer:
A. The pressure denoted as Pa and Pb at the surfaces of A and B in the tube is
PA= Pgas
PB= Patmos
B. The second sketch
C. The gas pressure is
Pgas= Patmos+ rho.g(h2-h1)
= 1atm + rho.g (h2-h1)
Explanation:
Answer:
1) R1 + ((R2 × R3)/(R2 + R3))
2) 0.5 A
3) 3.6 V
Explanation:
1) We can see that resistors R2 and R3 are in parallel.
Formula for sum of parallel resistors; 1/Rt = 1/R2 + 1/R3
Making Rt the subject gives;
Rt = (R2 × R3)/(R2 + R3)
Now, Resistor R1 is in series with this sum of R2 and R3. Thus;
Total resistance of circuit = R1 + ((R2 × R3)/(R2 + R3))
2) R_total = R1 + ((R2 × R3)/(R2 + R3))
We are given;
R1 = 7.2 Ω
R2 = 8 Ω
R3 = 12 Ω
R_total = 7.2 + ((8 × 12)/(8 + 12))
R_total = 7.2 + 4.8
R_total = 12 Ω
Formula for current is;
I = V/R
I = 6/12
I = 0.5 A
3) since current through the circuit is 0.5 and R1 is 7.2 Ω.
Thus, potential difference through R1 is;
V = IR = 0.5 × 7.2 = 3.6 V
Answer:
a)
, b)
, c) D. The magnitud of the change in the ball's momentum.
Explanation:
a) The magnitude of the change in the ball's momentum is:
![\Delta p = (0.275\,kg)\cdot \left[\left(1.63\,\frac{m}{s} \right)-\left(-3.28\,\frac{m}{s} \right)\right]](https://tex.z-dn.net/?f=%5CDelta%20p%20%3D%20%280.275%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cleft%281.63%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29-%5Cleft%28-3.28%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5Cright%5D)

b) The change in the magnitude of the ball's momentum:
![\Delta p' = (0.275\,kg)\cdot \left[(1.63\,\frac{m}{s} )-(3.28\,\frac{m}{s} ) \right]](https://tex.z-dn.net/?f=%5CDelta%20p%27%20%3D%20%280.275%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%281.63%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29-%283.28%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%20%5Cright%5D)

c) The magnitude of the change in the ball's momentum is more directly related to the net force acting on the ball, as it measures the effect of the force on change in ball's motion at measured time according to the Impact Theorem. So, the right answer is option D.
Answer:
c
motorcycle, telephone, piano, lawn mower
All, or almost all, warm-blooded creatures get rid of excess heat by evaporating moisture from their bodies. It's a great system, because evaporation takes a lot of heat. That's the reason people perspire when we're active and build up a lot of heat inside. The evaporation of sweat from our skin carries away heat with it.
Dogs do not sweat on their skin. The only place they can evaporate moisture is through their mouth. Panting speeds up the evaporation by blowing air across the moisture.