Complete question:
A 200 g load attached to a horizontal spring moves in simple harmonic motion with a period of 0.410 s. The total mechanical energy of the spring–load system is 2.00 J. Find
(a) the force constant of the spring and (b) the amplitude of the motion.
Answer:
(a) the force constant of the spring = 47 N/m
(b) the amplitude of the motion = 0.292 m
Explanation:
Given;
mass of the spring, m = 200g = 0.2 kg
period of oscillation, T = 0.410 s
total mechanical energy of the spring, E = 2 J
The angular speed is calculated as follows;

(a) the force constant of the spring

(b) the amplitude of the motion
E = ¹/₂kA²
2E = kA²
A² = 2E/k

Answer:
dT(t)/dt = k[T5 - T(t)]
Explanation:
Since T(t) represents the temperature of the object and T5 represents the temperature of the surroundings, according to Newton's law of cooling, the rate at which an object's temperature changes is directly proportional to the difference in temperature between the object and the surrounding medium, that is dT(t)/dt ∝ T5 - T(t)
Introducing the constant of proportionality
dT(t)/dt = k[T5 - T(t)]
which is the desired differential equation
Answer:
The apparent weight of the object is 0.465 N.
Explanation:
Given that,
Weight = 0.71 N
Water level = 50 mL
object inserted = 75 mL
We need to calculate the volume of solid
Using formula of volume

We need to calculate the buoyancy force
Using formula of buoyancy force

Put the value into the formula


We need to calculate the apparent weight of the object
Using formula of apparent weight

Put the value into the formula


Hence, The apparent weight of the object is 0.465 N.
1) all matter is made of atoms , atoms are indivisible and indestructible 2) compounds are formed by a combination of two or more different kinds of atoms 3) a chemical reaction is an arrangement of atoms