Question 1:
For this case we have that by definition, if a and b are two parallel lines, then the corresponding angles are congruent, that is, we can write 3x + 2 and x + 8 as supplementary angles:
![(3x + 2) + (x + 8) = 180\\3x + 2 + x + 8 = 180\\4x + 10 = 180\\4x = 180-10\\4x = 170\\x = \frac {170} {4}\\x = 42.5](https://tex.z-dn.net/?f=%283x%20%2B%202%29%20%2B%20%28x%20%2B%208%29%20%3D%20180%5C%5C3x%20%2B%202%20%2B%20x%20%2B%208%20%3D%20180%5C%5C4x%20%2B%2010%20%3D%20180%5C%5C4x%20%3D%20180-10%5C%5C4x%20%3D%20170%5C%5Cx%20%3D%20%5Cfrac%20%7B170%7D%20%7B4%7D%5C%5Cx%20%3D%2042.5)
We look for the value of the angles:
![3 (42.5) + 2 = 129.5\ degrees\\42.5 + 8 = 50.5 \ degrees](https://tex.z-dn.net/?f=3%20%2842.5%29%20%2B%202%20%3D%20129.5%5C%20degrees%5C%5C42.5%20%2B%208%20%3D%2050.5%20%5C%20degrees)
ANswer:
![x = 42.5\\3 (42.5) + 2 = 129.5\ degrees\\42.5 + 8 = 50.5 \ degrees](https://tex.z-dn.net/?f=x%20%3D%2042.5%5C%5C3%20%2842.5%29%20%2B%202%20%3D%20129.5%5C%20degrees%5C%5C42.5%20%2B%208%20%3D%2050.5%20%5C%20degrees)
Question 2:
For this case we have that by definition, the equation of a line of the slope-intersection form is given by:
![y = mx + b](https://tex.z-dn.net/?f=y%20%3D%20mx%20%2B%20b)
Where:
m: It's the slope
b: It is the cutoff point with the y axis
Now, in the equation ![y = 2x + 3](https://tex.z-dn.net/?f=y%20%3D%202x%20%2B%203)
![m = 2\\b = 3](https://tex.z-dn.net/?f=m%20%3D%202%5C%5Cb%20%3D%203)
By definition, if two lines are parallel, their slopes are equal. Also, if two lines are perpendicular, then the product of their slopes is -1.
So:
The slope of a line parallel to the given line is:
![m = 3](https://tex.z-dn.net/?f=m%20%3D%203)
The slope of a line perpendicular to the given line is:
![3 * m = -1\\m = - \frac {1} {3}](https://tex.z-dn.net/?f=3%20%2A%20m%20%3D%20-1%5C%5Cm%20%3D%20-%20%5Cfrac%20%7B1%7D%20%7B3%7D)
ANswer:
![3\\- \frac {1} {3}](https://tex.z-dn.net/?f=3%5C%5C-%20%5Cfrac%20%7B1%7D%20%7B3%7D)