1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
3 years ago
15

What is 8 x 100 + 3 x 10 + 2 x1 + 5x 1/10 + 6 x 1/100

Mathematics
1 answer:
Savatey [412]3 years ago
8 0

Answer:

832.56

Step-by-step explanation:

Your welcome

You might be interested in
A family spent $186 per week for food. This was 20% of its weekly income. What was the weekly income?
geniusboy [140]
It was $930.

To over check, multiply it by 20% , you will get $186.

Hope this helps !
5 0
4 years ago
Read 2 more answers
Solve for the system of liner equations by substitution. <br> X+4y= -1 <br> -3x-14=y
dem82 [27]
X=12x+55
y=-3x-14
simplfy to the right side
6 0
4 years ago
Define the double factorial of n, denoted n!!, as follows:n!!={1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n} if n is odd{2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n} if n is evenand (
tekilochka [14]

Answer:

Radius of convergence of power series is \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{1}{108}

Step-by-step explanation:

Given that:

n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n        n is odd

n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n       n is even

(-1)!! = 0!! = 1

We have to find the radius of convergence of power series:

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

Power series centered at x = a is:

\sum_{n=1}^{\infty}c_{n}(x-a)^{n}

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

a_{n}=[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}n!(3(n+1)+3)!(2(n+1))!!}{[(n+1+9)!]^{3}(4(n+1)+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]

Applying the ratio test:

\frac{a_{n}}{a_{n+1}}=\frac{[\frac{32^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]}{[\frac{32^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]}

\frac{a_{n}}{a_{n+1}}=\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

Applying n → ∞

\lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}= \lim_{n \to \infty}\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

The numerator as well denominator of \frac{a_{n}}{a_{n+1}} are polynomials of fifth degree with leading coefficients:

(1^{3})(4)(4)=16\\(32)(1)(3)(3)(3)(2)=1728\\ \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{16}{1728}=\frac{1}{108}

4 0
3 years ago
PLEASE ANSWER QUICKLY!!!!
nikitadnepr [17]
It’s kinda blurry, can u retake it
7 0
3 years ago
Simplify. square root (108 x^5 y^6)
sveta [45]
\bf \sqrt{108x^5y^6}\qquad &#10;\begin{cases}&#10;108=2\cdot 2\cdot 3\cdot 3\cdot 3\\&#10;\qquad 2^2\cdot 3^2\cdot 3\\&#10;\qquad (2\cdot 3)^2\cdot 3\\&#10;\qquad 6^2\cdot 3\\&#10;x^5=x^{4+1}\\&#10;\qquad x^4\cdot  x^1\\&#10;\qquad x^{2\cdot 2}\cdot x\\&#10;\qquad (x^2)^2\cdot x\\&#10;y^6=y^{3\cdot 2}\\&#10;\qquad (y^3)^2&#10;\end{cases}\implies \sqrt{6^2\cdot 3\cdot (x^2)^2\cdot x\cdot (y^3)^2}&#10;\\\\\\&#10;6x^2y^3\sqrt{3x}
3 0
3 years ago
Other questions:
  • Find the sale price.<br><br> Original Price - $56.00<br><br> Discount- 20%
    11·1 answer
  • Find an equation of the circle that satisfies the given conditions:
    9·1 answer
  • 3/8h=-9 (3 OVER 8)<br><br> plz help
    7·2 answers
  • Help me please, I’ll give brainliest
    6·1 answer
  • Find the solution Sin(tan-1 0)
    11·1 answer
  • If the circle graph above represents the activities Skylar completes in a day, how
    9·1 answer
  • If each slice of pizza is 1/16 of the pizza what is the decimal form of 8 slices of pizza
    5·1 answer
  • What is the answer for this one ?1
    5·1 answer
  • Determine the diameter of the circle with the equation x 2+ y 2= 9.
    7·1 answer
  • Triangles 1 and 2 are both isosceles. They each have a 30 degree angle. Explain why these triangles don't have to be similar to
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!