Answer:
seven electrons
Explanation:
Chlorine is present in group seventeen of periodic table. It is halogen element. All halogens have seven electrons in outer most valance shell.
The require only one electron to gain the stable electronic configuration or to complete the octet.
Electronic configuration of chlorine:
Cl₁₇ = 1s² 2s² 2p⁶ 3s² 3p⁵
Abbreviated electronic configuration:
Cl₁₇ = [Ne] 3s² 3p⁵
Properties of chlorine:
1. it is greenish-yellow irritating gas.
2. its melting point is 172.2 K
3. its boiling point is 238.6 K
4. it is disinfectant and can kill the bacteria.
5. it is also used in manufacturing of paper, paints and textile industries.
Answer:
K = Ka/Kb
Explanation:
P(s) + (3/2) Cl₂(g) <-------> PCl₃(g) K = ?
P(s) + (5/2) Cl₂(g) <--------> PCl₅(g) Ka
PCl₃(g) + Cl₂(g) <---------> PCl₅(g) Kb
K = [PCl₃]/ ([P] [Cl₂]⁽³'²⁾)
Ka = [PCl₅]/ ([P] [Cl₂]⁽⁵'²⁾)
Kb = [PCl₅]/ ([PCl₃] [Cl₂])
Since [PCl₅] = [PCl₅]
From the Ka equation,
[PCl₅] = Ka ([P] [Cl₂]⁽⁵'²⁾)
From the Kb equation
[PCl₅] = Kb ([PCl₃] [Cl₂])
Equating them
Ka ([P] [Cl₂]⁽⁵'²⁾) = Kb ([PCl₃] [Cl₂])
(Ka/Kb) = ([PCl₃] [Cl₂]) / ([P] [Cl₂]⁽⁵'²⁾)
(Ka/Kb) = [PCl₃] / ([P] [Cl₂]⁽³'²⁾)
Comparing this with the equation for the overall equilibrium constant
K = Ka/Kb
Answer:
Temperature decreases and density increases
Explanation:
Let us remember that density of a material increases as the temperature of the material decreases. So the cooler a material becomes, the denser it becomes also.
Between points B and C, the material rapidly cools down and the temperature decreases accordingly. This ultimately results in an increase in density since cooler materials are denser than hot materials.
so you can see those fluorine atoms have really spread out around the central phosphorus atom. this gives us a trigonal bi-pyramidal molecular geometry for pf5.
Answer:
Alkenes of the type R–CH=CH–R can exist as cis and trans isomers;