When we have this balanced equation for a reaction:
Fe(OH)2(s) ↔ Fe+2 + 2OH-
when Fe(OH)2 give 1 mole of Fe+2 & 2 mol of OH-
so we can assume [Fe+2] = X and [OH-] = 2 X
when Ksp = [Fe+2][OH-]^2
and have Ksp = 4.87x10^-17
[Fe+2]= X
[OH-] = 2X
so by substitution
4.87x10^-17 = X*(2X)^2
∴X^3 = 4.8x10^-17 / 4
∴the molar solubility X = 2.3x10^-6 M
The answer is B. A good way determine this is how far right the element is on the periodic table. The further right the element is, the more electronegative it is meaning it is more willing to accept an electron. This can be explained using the valence electrons and how many need to be added or removed to complete the octet. The further right you are, the easier it is for the element to just gain a few electrons instead of loose a bunch. Noble gases are the exception to this since they don't normally react though.
Answer:
According to Le Chatelier's principle, increasing the reaction temperature of an exothermic reaction causes a shift to the left and decreasing the reaction temperature causes a shift to the right.
Explanation:
C6H12O6(s) + 6O2(g) ⇌6CO2(g) + 6H2O(g)
We are told that the forward reaction is exothermic, meaning heat is removed from the reacting substance to the surroundings.
According to Le Chatelier's principle,
1. for an exothermic reaction, on increasing the temperature, there is a shift in equilibrium to the left and formation of the product is favoured.
2. if the temperature of the system is decreased, the equilibrium shifts to right and the formation of the reactants is favoured.
3. if the reaction temperature is kept constant, the system is at equilibrium and there is no shift to the right nor to the left.