The question is missing parts. The complete question is as follows.
Consider the two gaseous equilibria involving SO2 and the corresponding equilibrium constants at 298K:
⇔
; 
⇔ 
The values of the equilibrium constants are related by:
a)
= 
b) 
c) 
d) 
Answer: c) 
Explanation: <u>Equilibrium</u> <u>constant</u> is a value in which the rate of the reaction going towards the right is the same rate as the reaction going towards the left. It is represented by letter K and is calculated as:
![K=\frac{[products]^{n}}{[reagents]^{m}}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5Bproducts%5D%5E%7Bn%7D%7D%7B%5Breagents%5D%5E%7Bm%7D%7D)
The concentration of each product divided by the concentration of each reagent. The indices, m and n, represent the coefficient of each product and each reagent.
The equilibrium constants of each reaction are:
⇔ 
![K_{1}=\frac{[SO_{3}]}{[SO_{2}][O_{2}]^{1/2}}](https://tex.z-dn.net/?f=K_%7B1%7D%3D%5Cfrac%7B%5BSO_%7B3%7D%5D%7D%7B%5BSO_%7B2%7D%5D%5BO_%7B2%7D%5D%5E%7B1%2F2%7D%7D)
⇔ 
![K_{2}=\frac{[SO_{2}]^{2}[O_{2}]}{[SO_{3}]^{2}}](https://tex.z-dn.net/?f=K_%7B2%7D%3D%5Cfrac%7B%5BSO_%7B2%7D%5D%5E%7B2%7D%5BO_%7B2%7D%5D%7D%7B%5BSO_%7B3%7D%5D%5E%7B2%7D%7D)
Now, analysing each constant, it is easy to see that
is the inverse of
.
If you doubled the first reaction, it will have the same coefficients of the second reaction. Since coefficients are "transformed" in power for the constant, the relationship is:

Answer:
sun gives you vitamin D
Explanation:
Our body creates vitamin D from direct sunlight on our skin when we're outdoors.
non-Metals:
Nitrogen.
Oxygen.
Helium.
Sulfur.
Chlorine.
Explanation/Answer:
Metal atoms have only a few electrons in their outer shell whereas non-metal atoms have lots of electrons in their outer shell. This means that metals tend to react with non-metals. When a metal reacts with a non-metal, electrons transfer from the metal to the non-metal.
HOPE I HELPED!!
Answer: Calcium carbonate is another example of a compound with both ionic and covalent bonds. Here calcium acts as the cation, with the carbonate species as the anion. These species share an ionic bond, while the carbon and oxygen atoms in carbonate are covalently bonded
Explanation: