Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:

Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:

Where θ is the angular displacement and t is the time. Solving for t:

The angular displacement is θ=14°. Converting to radians:

The angular speed is w=1436 rev/min. Converting to rad/s:

Thus the time is:

t = 0.0016 s
Thus the speed of the bullet is:

v = 381 m/s
Answer:
The force generated by a single muscle fiber can be increased by increasing the frequency of action potentials
Explanation:
The force generated by a muscle fiber is the result of the shortening of the skeletal muscle, and this force is also know as muscle tension. The larger motor units shorten along with the smaller units to produce the muscle force. The time lapsed between the beginning of the action potential in the muscle and the beginning of the contraction is the latent period. Action potential is the result of the difference electrical potential as a result of passage of an impulse along the membrane of a muscle or nerve cell.
Answer:
i - component of V is zero for any value of t i-e no motion in this direction
Explanation:
Since
r= i+3
j+t k
==> V =
=
=
and acceleration is given by taking derivative of velocity w.r.t t
==> a=
=
=
so, V=0i+6tj+k
and
a = 0i+6j+k
i - component of V is zero for any value of t i-e no motion in this direction