Answer:
Explanation:
To determine the molecular formula of the compound, the empirical formula must be determined first. To determine the empirical formula, the percentage of each constituent is divided by its molar mass. This is shown below
Carbon = 60/12 = 5
Oxygen = 32/16 = 2
Hydrogen = 8/1 = 8
The next step is to divide each ratio by the smallest value. The smallest value is 2. It becomes
Carbon = 5/2 = 2.5
It is approximated to 3
Oxygen = 2/2 = 1
Hydrogen = 8/2 = 4
Therefore, the empirical formula is
C3H4O
From the given relative molecular mass of the compound, the molecular formula can be determined
Answer:
Abnormality is a behavioral characteristic assigned to those with conditions regarded as rare or dysfunctional. Behavior is considered abnormal when it is atypical or out of the ordinary, consists of undesirable behavior, and results in impairment in the individual's functioning
Explanation:
Answer:
Explanation:
From the given information, since the molecular mass of the ion M+ is not given;
Let's assume M+ = 58.0423
So, by applying the 13th rule;
we will need to divide the mass by 13, after dividing it;
The quotient n = no. of carbon; &
The addition of the quotient (n) with the remainder r = no. of hydrogen.
So;
So;
From the given information; we have oxygen present, so since the mass of oxygen = 16, we put oxygen in the molecular formula by removing . Also, since the mass is an even number then Nitrogen is 0.
So, we have:
Answer:
The veins that carry oxygenated bloof back into the heart are the pulmonary arteries.
Explanation:
Oxygen-rich blood flows from the lungs back into the left atrium (LA), or the left upper chamber of the heart, through four pulmonary veins. Oxygen-rich blood then flows through the mitral valve (MV) into the left ventricle (LV), or the left lower chamber.