1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
14

The temperature of a sample of water changes from 10°C to 20°C when the water absorbs 100 calories of heat. What is the mass of

the sample?
Chemistry
1 answer:
Vlad1618 [11]3 years ago
5 0

Answer:

10 g

Explanation:

Right from the start, just by inspecting the values given, you can say that the answer will be  

10 g

.

Now, here's what that is the case.

As you know, a substance's specific heat tells you how much heat is needed to increase the temperature of  

1 g

of that substance by  

1

∘

C

.

Water has a specific heat of approximately  

4.18

J

g

∘

C

. This tells you that in order to increase the temperature of  

1 g

of water by  

1

∘

C

, you need to provide  

4.18 J

of heat.

Now, how much heat would be required to increase the temperature of  

1 g

of water by  

10

∘

C

?

Well, you'd need  

4.18 J

to increase it by  

1

∘

C

, another  

4.18 J

to increase it by another  

1

∘

C

, and so on. This means that you'd need

4.18 J

×

10

=

41.8 J

to increase the temperature of  

1 g

of water by  

10

∘

C

.

Now look at the value given to you. If you need  

41.8 J

to increase the temperature of  

1 g

of water by  

10

∘

C

, what mass of water would require  

10

times as much heat to increase its temperature by  

10

∘

C

?

1 g

×

10

=

10 g

And that's your answer.

Mathematically, you can calculate this by using the equation

q

=

m

⋅

c

⋅

Δ

T

 

, where

q

- heat absorbed/lost

m

- the mass of the sample

c

- the specific heat of the substance

Δ

T

- the change in temperature, defined as final temperature minus initial temperature

Plug in your values to get

418

J

=

m

⋅

4.18

J

g

∘

C

⋅

(

20

−

10

)

∘

C

m

=

418

4.18

⋅

10

=

10 g

You might be interested in
Iron forms rust, expressed as Fe2O3.
Elina [12.6K]

Answer:

it's C. 159.70 g

Explanation:

hopefully that helps

3 0
3 years ago
What volume of 12M HCI is needed to prepare 250<br> of 0.20M HCI?
Alchen [17]

Answer: 4.2

Explanation:

M_{A}V_{A}=M_{B}V_{B}\\(12)V_{A}=(250)(0.20)\\V_{A}=\frac{(250)(0.20)}{12}=\boxed{4.2}

6 0
2 years ago
Classify each element. Note that another term for main group is representative, another term for semimetal is metalloid, and the
NikAS [45]

The question is incomplete, here is the complete question:

Classify each element. Note that another term for main group is representative, another term for semi-metal is metalloid, and the inner transition metals are also called the lanthanide and actinide series.

Hf, Am, In, Ta, As, Se, Rn

<u>Answer:</u>

Hafnium and tantalum are transition elements.

Americium is a inner transition element.

Indium, Selenium and Radon are main group elements.

Arsenic is a metalloid.

<u>Explanation:</u>

Main group elements are the elements which belong to s block and p block. They are also known as representative elements.

S-block elements are defined as the elements whose last electron enters s-sub shell. The general electronic configuration of these elements is ns^{1-2}

P-block elements are defined as the elements whose last electron enters p-sub shell. The general electronic configuration of these elements is np^{1-6}

Metalloids are defined as the elements which show intermediate properties between metals and non-metals. There are 7 metalloids in the periodic table. They are: Boron, Silicon, germanium, Arsenic, Antimony, Tellurium and Polonium.

Transition elements are known as d-block elements. D block elements are defined as the elements whose last electron enters d sub shell. The general electronic configuration of these elements is [(n-1)d^{1-10}ns^{0-2}]

Inner transition elements are known as (f block) elements. (F block) elements are defined as the elements whose last electron enters (f subshell). The general electronic configuration of these elements is [(n-2)f^{1-14}(n-1)d^{0-1}ns^{2}]. They are also known as lanthanide and actinide series.

For the given elements:

  • <u>Option 1:</u> Hf

Hafnium is the 72nd element of the periodic table having electronic configuration of [Xe]4f^{14}5d^26s^2

As, the last electron is entering the d subshell, it is a transition element.

  • <u>Option 2:</u> Am

Americium is the 95th element of the periodic table having electronic configuration of [Rn]5f^{7}6d^07s^2

As, the last electron is entering the (f subshell), it is a inner transition element.

  • <u>Option 3:</u> In

Indium is the 49th element of the periodic table having electronic configuration of [Kr]5s^25p^1

As, the last electron is entering the p subshell, it is a main group element.

  • <u>Option 4:</u> Ta

Tantalum is the 73rd element of the periodic table having electronic configuration of [Xe]4f^{14}5d^56s^2

As, the last electron is entering the d subshell, it is a transition element.

  • <u>Option 5:</u> As

Arsenic is the 33rd element of the periodic table having electronic configuration of [Ar]4s^24p^3

As, the last electron is entering the p subshell, it is a main group element. It shows an intermediate property of metal and non-metal. Thus, it is a metalloid.

  • <u>Option 6:</u> Se

Selenium is the 34th element of the periodic table having electronic configuration of [Ar]4s^24p^4

As, the last electron is entering the p subshell, it is a main group element.

  • <u>Option 7:</u> Rn

Radon is the 86th element of the periodic table having electronic configuration of [Xe]4f^{14}5d^{10}6s^26p^6

As, the last electron is entering the p subshell, it is a main group element.

5 0
3 years ago
A sample of 0.600 mol of a metal m reacts completely with excess fluorine to form 46.8 g of mf2. how many moles of f are in the
oksian1 [2.3K]
The balanced chemical reaction is expressed as:

M + F2 = MF2

To determine the moles of the element fluorine present in the product, we need to determine the moles of the product formed from the reaction and relate this value to the ratio of the elements in MF2. We do as follows:

moles MF2 produced = 0.600 mol M ( 1 mol MF2 / 1 mol M ) = 0.600 mol MF2
molar mass MF2 = 46.8 g MF2 / 0.6 mol MF2 = 78 g/mol
moles MF2 = 46.8 g ( 1 mol / 78 g ) = 0.6 mol
moles F = 0.6 mol MF2 ( 2 mol F / 1 mol MF2 ) = 1.2 moles F
6 0
3 years ago
A mole is the amount of a substance that contains as many particles as the number of atoms in 12 grams of what isotope?
ioda
The <span>12C</span><span> isotope.  Hope this helps.</span>
3 0
3 years ago
Other questions:
  • A benefit of using nuclear energy could be the abundance of uranium in nature. Which human risk about mining is the most importa
    15·2 answers
  • What is the oxidation of Fe in Fe2O3
    15·1 answer
  • What is 19 hundred thousandths in scientific notation
    11·2 answers
  • The common laboratory solvent ethanol is often used to purify substances dissolved in it. The vapor pressure of ethanol , CH3CH2
    13·1 answer
  • Pollution is an example of what kind of environmental problem
    9·1 answer
  • Stable electron configurations are likely to contain ____.
    14·2 answers
  • What could happen to the amount of greenhouse gases in the atmosphere if oceans continue to warm? How could this impact global c
    14·1 answer
  • The molarity of a 4.200 L solution is 1.230 M Na2CO3. What is the mass of Na2CO3
    5·1 answer
  • Why do people in Himachal Pradesh usually use thick fabrics?
    5·2 answers
  • TRUE OR FALSE? Alloys are used more than pure metals because they are generally softer and less likely to react with air or wate
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!