They equal the same so I’m pretty sure it has no solution x
Answer:
- Walnuts cost $1.75, chocolate chips cost $2.75
Step-by-step explanation:
<h3>Let the costs be:</h3>
- Walnuts - x
- Chocolate chips - y
<h3>Set equations as per question</h3>
For 7 pounds of walnuts and 9 pounds of chocolate chips, the total cost is $37:
For 5 pounds of walnuts and 3 pounds of chocolate chips, the total cost is $17:
<h3>Solve the system by elimination</h3>
Multiply the second equation by 3 and subtract the first equation, solve for x:
- 3(5x + 3y) - (7x + 9y) = 3(17) - 37
- 15x + 9y - 7x - 9y = 51 - 37
- 8x = 14
- x = 14/8
- x = 1.75
Find the value of y:
- 7*1.75 + 9y = 37
- 12.25 + 9y = 37
- 9y = 37 - 12.25
- 9y = 24.75
- y = 24.75/9
- y = 2.75
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
Answer:
<4 = 22
Step-by-step explanation:
<4 = x
x + 158 = 180
x = 22