The symbols indicate the physical state of each reactant
Answer: 36.6°C
Explanation:
Given that,
initial pressure of helium (P1) = 1.20 atm
Initial temperature (T1) = 22.0°C
Final temperature (T2) = ?
Final pressure of helium (P2) = 2.00 atm
Since pressure and temperature are given while volume is constant, apply the formula for pressure's law
P1/T1= P2/T2
1.20 atm / 22.0°C = 2.00 atm / T2
Cross multiply
1.20 atm•T2= 2.00 atm•22°C
1.20 atm•T2= 44 atm•°C
Divide both sides by 1.20 atm
1.20 atm•T2/1.20 atm = 44 atm•°C/1.20 atm
T2 = 36.6°C
Answer: (e) The pressure in the container increases but does not double.
Explanation:
To solve this, we need to first remember our gas law, Boyle's law states that the pressure and volume of a gas have an inverse relationship. That is, If volume increases, then pressure decreases and vice versa, when temperature is held constant. Therefore, increasing the volume in this case does not double the pressure owning to out gas law, but an increase in pressure would be noticed if temperature is constant
Or, you can have no airbags and die... hehe