Answer:
answer is in an image here
imageshare.best/image.php?id=JS9NDO
Explanation:
copy n paste in browser
not a bot btw
Answer:
False
Step-by-step explanation:
Consider the equations with the same number of equations and variables as shown below,
<u>Case 1</u>

This equation has no solution because it is not possible to have two numbers that give a sum of 0 and 1 simultaneously.
<u>Case 2</u>

This equation has infinitely many possible solutions.
Therefore it is FALSE to say a linear system with the same number of equations and variables, must have a unique solution.
<span>Simplifying
12 + -6(w + -3) = 3(-5 + -3w) + 21
Reorder the terms:
12 + -6(-3 + w) = 3(-5 + -3w) + 21
12 + (-3 * -6 + w * -6) = 3(-5 + -3w) + 21
12 + (18 + -6w) = 3(-5 + -3w) + 21
Combine like terms: 12 + 18 = 30
30 + -6w = 3(-5 + -3w) + 21
30 + -6w = (-5 * 3 + -3w * 3) + 21
30 + -6w = (-15 + -9w) + 21
Reorder the terms:
30 + -6w = -15 + 21 + -9w
Combine like terms: -15 + 21 = 6
30 + -6w = 6 + -9w
Solving
30 + -6w = 6 + -9w
Solving for variable 'w'.
Move all terms containing w to the left, all other terms to the right.
Add '9w' to each side of the equation.
30 + -6w + 9w = 6 + -9w + 9w
Combine like terms: -6w + 9w = 3w
30 + 3w = 6 + -9w + 9w
Combine like terms: -9w + 9w = 0
30 + 3w = 6 + 0
30 + 3w = 6
Add '-30' to each side of the equation.
30 + -30 + 3w = 6 + -30
Combine like terms: 30 + -30 = 0
0 + 3w = 6 + -30
3w = 6 + -30
Combine like terms: 6 + -30 = -24
3w = -24
Divide each side by '3'.
w = -8
Simplifying
w = -8</span>
<h3>
Answer: Choice C</h3>
Explanation:
The x intercepts or roots are x = 3 and x = 5, which lead to the factors x-3 and x-5 respectively.
Multiplying out those factors gets us this:
(x-3)(x-5)
x(x-5)-3(x-5)
x^2-5x-3x+15
x^2-8x+15
Answer:
27
Step-by-step explanation: