Answer:
<h2><em><u>120</u></em><em><u> </u></em><em><u>square</u></em><em><u> </u></em><em><u>units</u></em><em><u> </u></em></h2>
Step-by-step explanation:
<em><u>Given</u></em><em><u>, </u></em>
Base of the parallelogram = 10
Height of the parallelogram = 12
<em><u>Therefore</u></em><em><u>, </u></em>
Area of the parallelogram = <em>base</em><em> </em><em>×</em><em> </em><em>height</em><em> </em>
= 10 × 12
= 120
<em><u>Hence</u></em><em><u>,</u></em>
<em><u>Area</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>parallelogram</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>120</u></em><em><u> </u></em><em><u>square</u></em><em><u> </u></em><em><u>units</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>
Answer:
d < -60
Step-by-step explanation:
Let d represent the depth of the researchers' second dive.
Given;
Depth of First dive = -60 ft
It was stated that in their second dive, the researchers explore a deeper depth, That is depth deeper than 60 ft.
Since the depth of 60ft is represented by the integer -60,
Deeper depth would be represented by integers less than -60.
So, d can be represented as;
d < -60
Answer: 150 pounds
Step-by-step explanation:
For the fulcrum to balance, the product of weight and distance on both sides of the fulcrum must be the same.
Let d1= x. since total distance is 12, we can write d2 = 12 - x
for the fulcrum to balance:
60x = 50(12 - x)
60x = 600 - 50x
110x = 600
x = 5.45
Thus, d1= 5.45
and
d2= 12 - d1 = 12 - 5.45 = 6.55
d1 = 5.45
d2 = 6.55
Answer:
the value of a, if points A and D belong to the x−axis and m∠BAD=60 degrees is 2/√3
Step-by-step explanation:
Trapezoid ABCD with height 2 unit contain Points A and D which may be A(-1,0) and D(5.0)
Vertex of parabola is the point where parabola crosses its axis
Let suppose A and D are two points then draw altitude on them CE where C is on AD
As height of altitude has been given that is 2 then
total angle = 180 degrees
m∠BAD=60 degrees
m∠CEA =180 - 60 -90
= 30
then the value for AE = 2/√3.
y=a(x+1)(x−5).
where 2/√3 is right of -1 and 2 unit above x-axis