Answer:
wall
Explanation:
It is composed of peptidoglycan. The wall gives the cell its shape and surrounds the cytoplasmic membrane, protecting it from the environment.
Answer:EVERY OBJECT REMAIN AT THE STATE OF REST IN A UNIFORM MOTION UNLESS AN EXTERNAL FORCE ACTED UPON IT
Explanation:
Answer:
Plants and other creatures utilize photosynthesis to convert light energy into chemical energy, which is then released to power the organism's metabolic processes through cellular respiration.
OAmalOHopeO
Answer:
The functional groups that define the two different ends of a single strand of nucleic acids are:
B. a free hydroxyl group on the 5' carbon a free hydroxyl group on the 3' carbon
G. a free phosphate group on the 5' carbon
Explanation:
A nucleic acid is a polymer formed of nucleotides that are linked with a phosphodiester bond. The structure of a nucleotide consists on a phosphate group linked to a pentose (ribose in RNA and deoxyribose in DNA) that is also attached to a nitrogenous base. The nitrogenous bases are adenine, guanine, cytosine, thymine (in DNA) and uracil (in RNA).
DNA and RNA are nucleic acids which can be found in a double or single strand presentation.
Nucleic acids are synthesize in the 5’ to 3’ direction, so that is why the convention is that the sequences are written and read in that direction.
The strand of a nucleic acid is directional with an end-to-end orientation, where the 5’ end has a free hydroxyl or phosphate group on the 5' carbon of the terminal pentose, and the 3’ end has a free hydroxyl group on the 3’ carbon on the terminal pentose (ribose/ deoxyribose).
Answer:
Water can hydrogen bond.
Explanation:
Liquids become gases once they are heated to a certain temperature. Heat is a form of energy. This change occurs when the intermolecular forces between the liquid molecules are energized enough to break. This breakage is necessary because gaseous molecules exist individually and do not interact with one another. That being said, it takes more heat to boil water because its intermolecular forces are stronger than methanes.
Intermolecular forces (IMF) are a result of partial charges on the molecular atoms that cause temporary bonds to form between molecules.
Methane is a nonpolar molecule, meaning each atom can only have slight partial charges. The strongest IMF methane participates in are London Dispersion Forces.
Water, however, is a polar molecule, with the hydrogens having strong partial positive charges and the oxygens having strong partial negative charges. This allows water to participate in a very strong IMF called hydrogen bonding. Again, because these partial charges are so strong, the water molecules can form stronger IMFs.
<u>*When molecules have stronger IMFs, they require more energy(heat) to overcome them.*</u>