We can use combined gas laws to solve for the volume of the gas

where P - pressure, V - volume , T - temperature and k - constant

parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
T1 - temperature in Kelvin - 20 °C + 273 = 293 K
T2 - 40 °C + 273 = 313 K
substituting the values

V = 17.8 L
volume of the gas is 17.8 L
Answer:
(c) P and Sb
Explanation:
We can determine the number of valence electrons of an element:
- If it belongs to Groups 1 and 2, the number of valence electrons is equal to the number of group and the differential electron occupies the s subshell.
- If it belongs to the groups 13-18, the number of valence electrons is equal to: "Number of group - 10" and the differential electron occupies the p subshell.
Which pair of elements have the same valence electronic configuration of np³?
(a) O and Se. NO. They belong to the group 16 and the valence electron configuration is ns² np⁴.
(b) Ge and Pb. NO. They belong to the group 14 and the valence electron configuration is ns² np².
(c) P and Sb. YES. They belong to the group 15 and the valence electron configuration is ns² np³.
(d) K and Mg. NO. They belong to the groups 1 and 2 and the valence electron configuration is ns¹ and ns².
(e) Al and Ga. NO. They belong to the group 13 and the valence electron configuration is ns² np¹.
Answer:
Explanation:
C = 49.48
H = 5.19
O = 16.48
N = 28.85
ratio of moles
= 49.48 / 12 : 5.19 / 1 : 16.48 / 16 : 28.85 / 14
= 4.123 : 5.19 : 1.03 : 2.06
= 4 : 5 : 1 : 2
so the empirical formula = C₄ H₅O N₂
Let molecular formula = ( C₄ H₅ON₂ )ₙ ,
n ( 48 + 5 + 16 + 28 ) = 119.19
97 n = 194.19
n = 2 ( approx )
molecular formula = C₈ H₁₀O₂ N₄
Answer:
Explanation:
Electron affinity is the energy released in adding an electron to a neutral atom in the gas phase.
It is a measure of the readiness of an atom to gain an electron. This property is very peculiar to non-metals. The higher the value, the greater the tendency to accept electrons.
Across a period electron affinity increases due to the increasing nuclear charge not being compensated for.
Down a group, electron affinity decreases due to the low nuclear charge and the large atomic radii.
The exception to this rule is the stability of half-filled sublevels. For example, nitrogen has a configuration of 2,5 with sublevel notation of 1s²2s²2p³.
The p-sublevel has a degeneracy of three and the three electrons goes in singly. This makes the configuration stable.
We expect such an atom to have a higher electron affinity but its configuration is stable and carbon would have a higher affinity than it across the same period.
Half filled sublevels are exception to the trend of electron affinity.