Answer:
For example, friction between our shoes and the floor stop us from slipping and friction between tyres and the road stop cars from skidding. Friction is sometimes unhelpful. For example, if you don't lubricate your bike regularly with oil, the friction in the chain and axles increases.
Explanation:
a. 381.27 m/s
b. the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triiodide
<h3>Further explanation</h3>
Given
T = 100 + 273 = 373 K
Required
a. the gas speedi
b. The rate of effusion comparison
Solution
a.
Average velocities of gases can be expressed as root-mean-square averages. (V rms)

R = gas constant, T = temperature, Mm = molar mass of the gas particles
From the question
R = 8,314 J / mol K
T = temperature
Mm = molar mass, kg / mol
Molar mass of Sulfur dioxide = 64 g/mol = 0.064 kg/mol

b. the effusion rates of two gases = the square root of the inverse of their molar masses:

M₁ = molar mass sulfur dioxide = 64
M₂ = molar mass nitrogen triodide = 395

the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triodide
Answer:
they don't depend on the temperature
Answer : The change in internal energy is, 900 Joules.
Solution : Given,
Heat given to the system = +1400 J
Work done by the system = -500 J
Change in internal energy is equal to the sum of heat energy and work done.
Formula used :

where,
= change in internal energy
q = heat energy
w = work done
As per question, heat is added to the system that means, q is positive and work done by the system that means, w is negative.
Now put all the given values in the above formula, we get

Therefore, the change in internal energy is 900 J.
The change in internal energy depends on the heat energy and work done. As we will change in the heat energy and work done, then changes will occur in the internal energy. Hence, the energy is conserved.